

РУКОВОДСТВО ПО ВЫБОРУ, МОНТАЖУ И ЭКСПЛУАТАЦИИ КАБЕЛЕЙ С ИЗОЛЯЦИЕЙ ИЗ СШИТОГО ПОЛИЭТИЛЕНА на напряжение 6-35 кВ

Издание шестое

ОГЛАВЛЕНИЕ

Введение
1. Область применения
2. Хранение и транспортировка кабелей
3. Указания по прокладке кабелей
3.1. Общие указания
3.2. Способы прокладки кабелей
3.2.1. Прокладка кабелей в земле
3.2.1.1. Условия прокладки кабелей в вечномёрзлых грунтах 16
3.2.2. Условия прокладки кабелей в кабельных сооружениях
и производственных помещениях
3.2.3. Условия прокладки в трубах и блоках
3.3. Условия прокладки кабелей при низких температурах
4. Меры безопасности
5. Приёмка трассы
6. Прокладка кабеля
6.1. Общие условия
6.2. Подготовительные работы
6.3. Раскатка кабелей
6.4. Монтаж муфт
6.5. Испытания кабеля после прокладки
7. Эксплуатация кабелей
7.1. Общие положения по эксплуатации КЛ
7.2. Эксплуатационные характеристики кабелей
7.3. Муфты
7.3.1. Соединительные муфты для кабелей с изоляцией из сшитого
полиэтилена
7.3.2. Концевые муфты для кабелей с изоляцией из СПЭ
8. Расчётные конструктивные элементы кабелей
9. Гарантии изготовителя
ПРИЛОЖЕНИЕ А. Технология ремонта оболочки кабеля
ПРИЛОЖЕНИЕ Б. Ремонт кабельных трасс
ПРИЛОЖЕНИЕ (справочное)

ВВЕДЕНИЕ

В настоящем руководстве даны рекомендации по выбору, транспортировки и хранению, на технологический процесс монтажа и эксплуатацию кабельных линий (КЛ) с изоляцией из сшитого полиэтилена на напряжение 6–35 кВ.

1. ОБЛАСТЬ ПРИМЕНЕНИЯ

Кабели предназначены для передачи и распределения электрической энергии в стационарных установках на номинальное переменное напряжение 6, 10, 15, 20 и 35 кВ номинальной частотой 50 Гц для сетей с заземлённой и изолированной нейтралью. Кабели по конструктивному исполнению, техническим характеристикам и эксплуатационным свойствам соответствуют национальному стандарту ГОСТ Р 55025–2012, международному стандарту МЭК 60502-2 и гармонизированных документов технического комитета HD 620 S2[2] и HD 605 S2[3].

Характеристики кабеля, область применения	Изготовление по ТУ
Кабели на напряжение 6 кВ	TY 16.K71-359–2005
Кабели на напряжение 10, 15, 20, 35 кВ	TY 16.K71-335–2004
Кабели на напряжение 6, 10, 20 и 35 кВ для районов с холодных климатом	ТУ 3530-033-05742781-2010
кабели на напряжение 6, 10, 20 и 35 кВ не распространяющие горение, в том числе с пониженным дымо- и газовыделенем	TY 16.K22-028-2007
Кабели на напряжение 6, 10, 20 и 35 кВ с проволочной бронёй	ТУ 3530-031-05742781-2009
Кабели на напряжение 6, 10, 15, 20 и 35 кВ с алюминиевым проволочным экраном	ТУ 3530-042-05742781-2013
Кабели на напряжение 6, 10 и 35 кВ	ТУ 3530-046-05742781–2015
Кабели на напряжение 6, 10, 15, 20 и 35 кВ	ТУ 3530-050-05742781-2016
Кабели на напряжение 6, 10, 15 и 20 кВ с секторными токопроводящими жилами, в том числе не распространяющие горение	TY 3530-039-05742781-2016

Климатическое исполнение У, УХЛ, категории размещения 1 и 2 по ГОСТ 15150–69, включая прокладку в земле и воде. Кабели по ТУ 3530-033-05742781–2010 допускается эксплуатировать в условиях ХЛ категории размещения 1 и 2 по ГОСТ 15150–69. Кабели по ТУ 3530-031-05742781–2009 допускается эксплуатировать в условиях УХЛ категория размещения 1 и 5, включая прокладку в почве и воде, а также кабели допускается эксплуатировать в условиях УХЛ1а, УХЛ5а по ГОСТ 15150–69.

Примеры

Примеры условного обозначения при заказе и в документации другого изделия:

■ Кабель марки ПвП с одной круглой медной многопроволочной жилой сечением 120 мм², с медным экраном сечением 16 мм², на напряжение 35 кВ:

Кабель ПвП 1×120мк/16-35 ТУ 16.К71-335-2004

■ Кабель марки АПвВ-ХЛ с тремя алюминиевыми многопроволочными круглыми жилами номинальным сечением 240 мм², с медным экраном номинальным сечением 25 мм², на напряжение 10 кВ:

Кабель АПвВ-ХЛ 3×240мк/25-10 ТУ 3530-033-05742781-2010

■ Кабель марки АПвПу2г с одной круглой алюминиевой многопроволочной жилой номинальным сечением 400 мм², с медным экраном номинальным сечением 35 мм², на напряжение 6 кВ с продольной и поперечной водоблокировкой конструкции кабеля:

Кабель АПвПу2г 1×400мк/35-6 ТУ 16.К71-359-2005

■ Кабель марки ПвВнг(В)-LS с тремя медными многопроволочными круглыми жилами номинальным сечением 95 мм², с медным экраном номинальным сечением 16 мм², на напряжение 10 кВ:

Кабель ПвВнг(В)-LS 3×95мк/16-10 ТУ 16.К22-028-2007

■ Кабель марки АПвЭаПг с одной круглой алюминиевой многопроволочной жилой сечением 500 мм², с алюминиевым экраном сечением 60 мм², на напряжение 35 кВ:

Кабель АПвЭаПг 1×500мк/60-35 ТУ 3530-042-05742781-2013

■ Кабель марки ПвКПг с тремя медными многопроволочными круглыми жилами номинальным сечением 150 мм², с медным экраном номинальным сечением 25 мм², с броней из стальных оцинкованных проволок на напряжение 10 кВ:

Кабель ПвКПг 3×150мк/25-10 ТУ 3530-031-05742781-2009

■ Кабель марки ПвВ с одной круглой медной многопроволочной жилой сечением 120 мм², с медным экраном сечением 16 мм², на напряжение 20 кВ:

Кабель ПвВ 1×120мк/16-20 ТУ 3530-050-05742781-2016

■ Кабель марки АПвБВнг(A)-LS с тремя алюминиевыми многопроволочными круглыми жилами номинальным сечением 70 мм², с медным экраном номинальным сечением 16 мм², с броней из 2-х стальных оцинкованных лент на напряжение 10 кВ:

Кабель АПвБВнг(A)-LS 3×70мк/16-10 ТУ 3530-046-05742781-2015

■ Кабель марки ПвВнг(A)-LS с тремя медными многопроволочными жилами секторной формы номинальным сечением 240 мм², с медным экраном номинальным сечением 25 мм², на напряжение 6 кВ:

Кабель ПвВнг(A)-LS 3×240мс/25-6 ТУ 3530-039-05742781-2016

Кабели изготавливают одно- и трёхжильными. Марки кабелей, наименование элементов конструкции и обозначение класса пожарной опасности по ГОСТ 31565 приведены в таблице 1.

Таблица 1. Марки кабелей, наименование элементов конструкции, класс пожарной опасности.

Марка кабеля	Наименование элементов конструкции	Класс пожарной опасности
АПвП ПвП	Одна или три токопроводящие жилы, изоляция из сшитого полиэтилена, наружная оболочка из полиэтилена	O2.8.2.5.4
АПвПу ПвПу	То же, в усиленной оболочки из полиэтилена	
АПвВ ПвВ	Одна или три токопроводящие жилы, изоляция из сшитого полиэтилена, наружная оболочка из	O1.8.2.5.4
АПвВ-ХЛ ПвВ-ХЛ	поливинилхлоридного пластиката	
АПвВнг(А)-LS ПвВнг(А)-LS	Одна или три токопроводящие жилы, изоляция из сшитого полиэтилена, наружная оболочка	П1б.8.2.2.2
АПвВнг(В)-LS ПвВнг(В)-LS	из ПВХ пластиката пониженной пожарной опасности	П2.8.2.2.2
АПвБП ПвБП	Три токопроводящие жилы, изоляция из сшитого полиэтилена, броня из металлических лент, наружная оболочка из полиэтилена	O2.8.2.5.4
АПвБВ ПвБВ АПвБВ-ХЛ	Три токопроводящие жилы, изоляция из сшитого полиэтилена, броня из металлических лент, наружная оболочка из ПВХ поливинилхлоридного пластиката	O1.8.2.5.4
ПвБВ-ХЛ АПвБВнг(A)-LS ПвБВнг(A)-LS	Три токопроводящие жилы, изоляция из сшитого полиэтилена, броня из металлических	П1б.8.2.2.2
АПвБВнг(В)-LS ПвБВнг(В)-LS	лент, наружная оболочка из ПВХ пластиката пониженной пожарной опасности	П2.8.2.2.2
АПвВнг(А)-ХЛ ПвВнг(А)-ХЛ	Одна или три токопроводящие жилы, изоляция	П1б.8.2.5.4
АПвВнг(В)-ХЛ ПвВнг(В)-ХЛ	•	

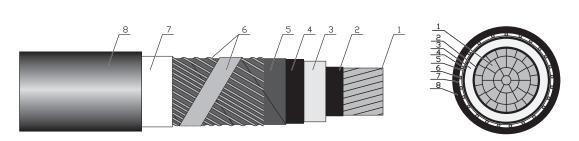
Таблица 1, продолжение.

Марка кабеля	Наименование элементов конструкции	Класс пожарной опасности
АПвБВнг(А)-ХЛ ПвБВнг(А)-ХЛ	Три токопроводящие жилы, изоляция из сшитого полиэтилена, броня из металлических лент, наружная оболочка из ПВХ пластиката пониженной горючести	П1б.8.2.5.4
АПвБВнг(В)-ХЛ ПвБВнг(В)-ХЛ	Три токопроводящие жилы, изоляция из сшитого полиэтилена, броня из металлических лент, наружная оболочка из ПВХ пластиката пониженной горючести	П2.8.2.5.4
АПвВнг(А) ПвВнг(А)	Одна или три токопроводящие жилы, изоляция из сшитого полиэтилена, наружная оболочка из	П1б.8.2.5.4
АПвВнг(В) ПвВнг(В)	ПВХ пластиката пониженной горючести	П2.8.2.5.4
АПвБВнг(А) ПвБВнг(А)	Три токопроводящие жилы, изоляция из сшитого полиэтилена, броня из металлических	П1б.8.2.5.4
АПвБВнг(В) ПвБВнг(В)	 лент, наружная оболочка из ПВХ пластиката пониженной горючести 	П2.8.2.5.4
АПвВнг(А) ПвВнг(А)	Одна или три токопроводящие жилы, изоляция	П1б.8.2.5.4
АПвВнг(В) ПвВнг(В)	из сшитого полиэтилена, наружная оболочка из ПВХ пластиката пониженной горючести	П2.8.2.5.4
АПвКаП ПвКаП	Одна токопроводящая жила, изоляция из сшитого полиэтилена, броня из алюминиевых проволок, наружная оболочка из полиэтилена	O2.8.2.5.4
АПвКаВ ПвКаВ	Одна токопроводящая жила, изоляция из сшитого полиэтилена, броня из алюминиевых	01.9.2.5.4
АПвКаВ-ХЛ ПвКаВ-ХЛ	 проволок, наружная оболочка из поливинилхлоридного пластиката 	O1.8.2.5.4
АПвКП ПвКП	Три токопроводящие жилы, изоляция из сшитого полиэтилена, броня из стальных оцинкованных проволок, наружная оболочка из полиэтилена	O2.8.2.5.4

Марка кабеля	Наименование элементов конструкции	Класс пожарной опасности
АПвКВ ПвКВ	Три токопроводящие жилы, изоляция из сшитого полиэтилена, броня из стальных оцинкованных проволок, наружная оболочка из	O1.8.2.5.4
АПвКВ-ХЛ ПвКВ-ХЛ	поливинилхлоридного пластиката	
АПвКаВнг(А)-ХЛ ПвКаВнг(А)-ХЛ	Одна токопроводящая жила, изоляция из сшитого полиэтилена, броня из алюминиевых проволок, наружная оболочка из ПВХ пластиката пониженной горючести	O1.8.2.5.4
АПвКаВнг(А)-ХЛ ПвКаВнг(А)-ХЛ	Три токопроводящие жилы, изоляция из сшитого полиэтилена, броня из стальных оцинкованных проволок, наружная оболочка из	П1б.8.2.5.4
АПвКаВнг(В)-ХЛ ПвКаВнг(В)-ХЛ	поливинилхлоридного пластиката пониженной горючести	П2.8.2.5.4
АПвЭаП ПвЭаП	Одна или три токопроводящие жилы, изоляция из сшитого полиэтилена, с металлическим экраном из алюминиевых проволок, с наружной оболочкой из полиэтилена	O2.8.2.5.4
АПвЭаВ ПвЭаВ	Одна или три токопроводящие жилы, изоляция из сшитого полиэтилена, с металлическим экраном из алюминиевых проволок, с наружной оболочкой из поливинилхлоридного пластиката	O1.8.2.5.4
АПвЭаВнг(А) ПвЭаВнг(А)	Одна или три токопроводящие жилы, изоляция из сшитого полиэтилена, с металлическим экраном из алюминиевых проволок, с наружной оболочкой из поливинилхлоридного пластиката пониженной горючести	П1б.8.2.5.4
АПвЭаВнг(А)-LS ПвЭаВнг(А)-LS	Одна или три токопроводящие жилы, изоляция из сшитого полиэтилена, с металлическим экраном из алюминиевых проволок, с наружной оболочкой из поливинилхлоридного пластиката пониженной пожарной опасности	П1б.8.2.2.2
АПвЭаБП ПвЭаБП	Три токопроводящие жилы, изоляция из сшитого полиэтилена, с металлическим экраном из алюминиевых проволок, с броней из металлических лент, с наружной оболочкой из полиэтилена	O2.8.2.5.4

Руководство по выбору, монтажу и эксплуатации кабелей с изоляцией из СПЭ на напряжение 6–35 кВ.

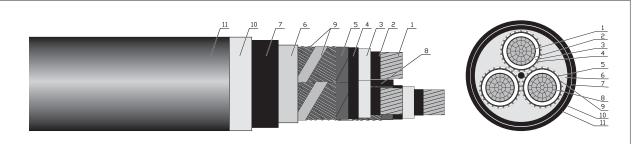
8


Марка кабеля	Наименование элементов конструкции	Класс пожарной опасности				
АПвЭаБВ ПвЭаБВ	Три токопроводящие жилы, изоляция из сшитого полиэтилена, с металлическим экраном из алюминиевых проволок, с броней из металлических лент, с наружной оболочкой из поливинилхлоридного пластиката	O1.8.2.5.4				
АПвЭаБВнг(А) ПвЭаБВнг(А)	Три токопроводящие жилы, изоляция из сшитого полиэтилена, с металлическим экраном из алюминиевых проволок, с броней из металлических лент, с наружной оболочкой из поливинилхлоридного пластиката пониженной горючести	П1б.8.2.5.4				
АПвЭаБВнг(А)-LS ПвЭаБВнг(А)-LS	Три токопроводящие жилы, изоляция из сшитого полиэтилена, с металлическим экраном из алюминиевых проволок, с броней из металлических лент, с наружной оболочкой из поливинилхлоридного пластиката пониженной пожарной опасности	П1б.8.2.2.2				
* В «числителе» указаны марки кабелей с алюминиевыми токопроводящими жилами, в «знаменателе» — с медны-						

ми токопроводящими жилами.

Примечания

- Индекс «ХЛ» в марке кабеля означает применение холодостойких материалов в конструкции кабеля. 1.
- 2. Индекс «нг(A;B)-LS» в марке кабеля означает низкое дымо- и газовыделение (Low Smoke).
- 3. Индекс «нг(A;B)» в марке кабеля означает применение в конструкции кабеля негорючих материалов.
- 4. Буква «Б» в марке кабеля означает применение брони из стальных оцинкованных лент.
- 5. Буквы «Ка» в марке кабеля означают применение брони из круглых алюминиевых проволок.
- Буква «К» в марке кабеля означает применение брони из круглых стальных проволок. 6.
- Для кабелей марок АПвП, ПвП, ПвБП, АПвБП, ПвПу, АПвПу, АПвКП, ПвКП, АПвКаП, ПвКаП, АПвЭаП, ПвЭаБП, АПвЭаБП, ПвЭаБП, ПвЭаПу, АПвЭаПу при наличии в конструкции герметизирующих элементов в обозначение марки кабеля добавляются индексы:
 - водоблокирующие ленты герметизации металлического экрана, например, ПвПг;
 - 2г дополнительная алюмополимерная лента поверх герметизированного экрана, например, ПвП2г
 - 2гж дополнительно продольная герметизация токопроводящих жил водоблокирующими нитями, например, ПвП2гж.
- В кабелях, имеющих броню из проволок алюминиевого сплава, в обозначении марки кабеля вместо «а» вводится индекс «ас», например, ПвКасП.
- В кабелях, имеющих металлический экран из проволок алюминиевого сплава, в обозначении марки кабеля вместо «а» вводится индекс «ас», например АПвЭасПг.
- Для кабелей марок с индексом нг-LS в зависимости от предела распространения горения по классификации ГОСТ 31565-2012 к обозначению марки добавляются индексы:


- А предел распространения горения ПРГП 16, например ПвВнг(A)–LS;
- В предел распространения горения ПРГП 2, например ПвВнг(В)–LS;

- 1. медная токопроводящая жила;
- 2. экран из электропроводящей сшитой композиции полиэтилена;
- 3. изоляция из сшитого полиэтилена;
- 4. экран из электропроводящей сшитой композиции полиэтилена;
- 5. слой из электропроводящей полимерной ленты или крепированной бумаги;
- 6. металлический экран из медных проволок, скрепляющей медной лентой или пасьмой;
- 7. внутренняя оболочка из поливинилхлоридного пластиката пониженной пожарной опасности;
- 8. термический барьер из 2-х стеклолент
- 9. наружная оболочка из поливинилхлоридного пластиката пониженной пожарной опасности.

Рисунок 1. Конструкция одножильного кабеля. Кабель марки ПвВнг(A)-LS по ТУ 16.К71-335–2004.

Схематичное изображение одножильного и трёхжильного кабелей представлено на

- 1. медная токопроводящая жила;
- 2. экран из электропроводящей сшитой композиции полиэтилена;
- 3. изоляция из сшитого полиэтилена;
- 4. экран из электропроводящей сшитой композиции полиэтилена;
- 5. слой из электропроводящей полимерной ленты или крепированной бумаги;
- 6. внутренняя оболочка из мелонаполненной композиции;
- 11. наружная оболочка из полиэтилена.

8. центральное заполнение;

лент:

7. подушка под броню из полиэтилена;

9. металлический экран из медных про-

волок, скрепляющей медной лентой; 10. броня из 2-х стальных оцинкованных

Рисунок 2. Конструкция трёхжильного кабеля. Кабель марки ПвБП по ТУ 16.К71-359–2005.

рисунках 1 и 2.

Кабели предназначены для эксплуатации в электрических сетях переменного напряжения с изолированной или заземленной нейтралью категорий «А», «В» и «С» в соответствии с международным стандартом МЭК 60183[6].

Категория электрической сети характеризуется продолжительностью перенапряжения в сети при однофазном замыкании на землю. К категории «А» относятся сети, которые при замыкании на землю продолжают работать не более 1 мин. К категории «В» относятся сети, которые при однофазном замыкании на землю продолжают работать не более 1 часа. К категории «С» относятся все сети, которые не входят ни в категорию «А», ни в категорию «В». Номинальное напряжение кабелей, рекомендуемых для использования в трехфазных сетях соответствующих категорий, приведено в таблице 2.

Таблица 2. Выбор номинального напряжения кабелей в зависимости от категории сети.

Максимальное	Номинальное напряжение кабеля, \emph{U}_0/\emph{U} , кВ				
напряжение сети, $U_{ m m}$, кВ	Категория сети «А» и «В»	Категория сети «С»			
7,2	3,6/6	6/10			
12	6/10	8,7/15			
17,5	8,7/15	12/20			
24	12/20	18/30			
42	20,2/35	20,2/35			

Прокладку и монтаж кабелей осуществляют по документации, утверждённой в установленном порядке, разработанной с учётом требований действующих Правил устройства электроустановок и строительных норм и правил.

ВНИМАНИЕ! Прокладка одножильного кабеля в стальной трубе не допускается.

Кабели предназначены для эксплуатации в стационарном состоянии при температуре окружающей среды:

- от минус 60°C до плюс 50°C для кабелей с индексом «ХЛ»;
- от минус 60°C до плюс 50°C для кабелей с наружной оболочкой из полиэтилена;
- от минус 50°C до плюс 50°C для остальных кабелей.

Кабели должны быть стойкими к воздействию повышенной влажности воздуха до 98% при температуре окружающей среды 35°C.

Герметизированные кабели должны быть устойчивы к продольному распространению воды при повреждении наружной оболочки. Проникновение воды в кабель не должно превышать 1500 мм в обе стороны от места повреждения наружной оболочки.

Преимущественные области применения кабелей с учётом их типа исполнения приведены в таблице 3.

Таблица 3. Преимущественная область применения кабелей.

Тип исполне- ния кабеля	Класс пожар- ной опасности	Преимущественная область применения
Без обозначе- ния	O1.8.2.5.4	Для одиночной прокладки в кабельных сооружениях и производственных помещениях. Групповая прокладка разрешается только в наружных электроустановках и производственных помещениях, где возможно лишь периодическое присутствие обслуживающего персонала, при этом необходимо применять пассивную огнезащиту.
нг(А) нг(А)-ХЛ нг(В) нг(В)-ХЛ	П1б.8.2.5.4 П2.8.2.5.4	Для прокладки, с учётом объёма горючей нагрузки кабелей, в открытых кабельных сооружениях (эстакадах, галереях) наружных электроустановок.
нг(A)-LS нг(B)-LS	П1б.8.2.2.2 П2.8.2.2.2	Для прокладки, с учётом объёма горючей нагрузки кабелей, во внутренних электроустановках, а также в зданиях, сооружениях и закрытых кабельных сооружениях.

Примечание. Преимущественная область применения герметизированных кабелей расширена в части использования в местах, где возможно проникновение влаги в кабель.

Кабели с наружной оболочкой из полиэтилена предназначены для эксплуатации при прокладке в земле независимо от степени коррозионной активности грунтов. Допускается прокладка этих кабелей на воздухе, в том числе в кабельных сооружениях, при условии обеспечения дополнительных мер противопожарной защиты, например, нанесения огнезащитных покрытий.

Допускается прокладка на сложных участках кабельных трасс, содержащих более 4 поворотов под углом свыше 30 градусов или прямолинейные участки с более чем четырьмя переходами в трубах длиной свыше 20м или с более чем двумя трубными переходами длиной свыше 40м.

Кабели указанных марок с индексами «г», «2г» и «2гж» предназначены для прокладки в земле, а также, в воде (в несудоходных водоемах) – при соблюдении мер, исключающих механические повреждения кабеля.

Кабели с наружной оболочкой из поливинилхлоридного пластиката, поливинилхлоридного пластиката пониженной пожарной опасности или поливинилхлоридного пластиката пониженной горючести могут быть проложены во взрывоопасных зонах любого класса.

Кабели предназначены для прокладки на трассах без ограничения разности уровней.

Одножильные кабели с броней из алюминиевых проволок (обозначение «Ка» в марке кабеля) предназначены для эксплуатации без растягивающих нагрузок в процессе эксплуатации, при соблюдении мер, исключающих механические повреждения кабеля.

Одножильные кабели с броней из проволок алюминиевого сплава (обозначение «Кас» в марке кабеля) и трехжильные кабели с броней из стальных проволок (обозначение «К» в марке кабеля) предназначены для прокладки на трассах, где возможны воздействия растягивающих усилий в процессе эксплуатации, в том числе для прокладки в сейсмически активных районах, в районах, где возможно смещение почв, в условиях вечной мерзлоты и в насыпных местах. Сейсмостойкость кабелей обеспечивается при воздействии землетрясений с интенсивностью до 9 баллов по MSK-64[8].

Трёхжильные кабели с броней из стальных лент или одножильные кабели с броней из алюминиевых лент, или лент из алюминиевого сплава предназначены для эксплуатации без растягивающих нагрузок, возникающих в процессе эксплуатации, при соблюдении мер, исключающих механические повреждения кабеля.

Кабели, в том числе бронированные, с наружной оболочкой из поливинилхлоридного пластиката и поливинилхлоридного пластиката пониженной горючести, предназначены для прокладки кабельных линий в сухих грунтах, на воздухе.

Кабели, в том числе бронированные, с наружной оболочкой из поливинилхлоридного пластиката пониженной пожарной опасности и предназначены для применения в кабельных линиях электропередачи для групповой прокладки на воздухе, в кабельных сооружениях и помещениях, в которых установлены повышенные требования к плотности дыма при пожаре.

2. ХРАНЕНИЕ И ТРАНСПОРТИРОВКА КАБЕЛЕЙ

Хранение барабанов с кабелем, а также транспортировка, должна осуществляться в соответствии с ГОСТ 18690.

При выполнении работ, связанных с транспортировкой, погрузкой/разгрузкой, должны соблюдаться следующие условия:

- концы кабелей во время транспортировки и хранения должны быть герметизированы термоусаживаемыми капами, чтобы предотвратить проникновение воды, а так же должны быть закреплены;
- барабаны должны всегда располагаться в вертикальном положении;
- барабан должен подниматься, запрещается сталкивать или закатывать барабаны;
- каждый барабан должен быть закреплен отдельно;
- погрузка/разгрузка барабанов с кабелем должна производиться с помощью грузоподьёмных механизмов необходимой грузоподъёмности с соблюдением соответствующих правил техники безопасности.

Допускается хранение кабелей на барабанах в обшитом виде на открытых площадках не более 2 лет, под навесом - не более 5 лет, в закрытых помещениях (складах) - не более 10 лет.

3. УКАЗАНИЯ ПО ПРОКЛАДКЕ КАБЕЛЕЙ

3.1. Общие указания

■ Прокладку кабелей разрешается выполнять при наличии проекта производства работ (ППР). Прокладка кабелей должна выполняться специализированной монтажной организацией, имеющей соответствующее оборудование, приспособления, инструмент, материалы и квалифицированных специалистов.

- К началу работ по прокладке кабелей должны быть полностью закончены строительные работы по сооружению туннелей, каналов, эстакад, колодцев, включая установку закладных частей для крепления кабельных конструкций, выполнены отделочные работы, смонтировано электроосвещение, вентиляция, а также системы пожаротушения и водоудаления. Траншеи и блоки для прокладки кабелей к началу работ должны быть полностью подготовлены в соответствии с требованиями СНиП 3.05.06.
- Приведенная в Руководстве технология прокладки распространяется на способы прокладки кабелей в земле (траншее), кабельных сооружениях, в блоках (трубах) и производственных помещениях.
- При прокладке кабелей должны также соблюдаться соответствующие нормы и правила, предусмотренные другими нормативными документами, утвержденными или согласованными в установленном порядке.
- Тяжение кабелей во время прокладки должно производиться при помощи проволочного кабельного чулка, закрепляемого на оболочке или за токопроводящую жилу при помощи клинового захвата. Усилия тяжения кабеля, возникающие при прокладке, не должны превышать величин, рассчитанных по формуле:

$P = \sigma \times S$

где P – усилие тяжения кабеля, H (к Γ с)

S – площадь сечения жилы кабеля, мм 2

 σ – предельно допускаемое при тяжении механическое напряжение в жиле кабеля, равное:

50 H/мм² (5,1 кГс/мм²) для кабелей с медной жилой;

30 H/мм² (3,06 кГс/мм²) для кабелей с алюминиевой жилой.

■ Минимальный радиус изгиба кабелей при прокладке должен быть не менее

 $15D_{H}$ – для одножильных кабелей,

12**D** $_{H}$, не менее, – для трёхжильных кабелей,

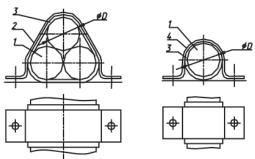
где D_{H} – наружный диаметр кабеля.

- При монтаже одножильных кабелей с использованием специального шаблона допускается минимальный радиус изгиба кабеля 7,5**D**_н, при этом место изгиба кабеля рекомендуется подогревать до температуры 20°C.
- Число изгибов кабеля под углом до 90°C на трассах прокладки должно быть не более 8 на строительную длину кабеля.
- Кабели следует укладывать с запасом по длине 1–2%, достаточным для компенсации температурных деформаций кабелей и конструкций, а также возможных смещений почвы. В траншеях и на сплошных поверхностях внутри зданий и сооружений запас создается путём укладки кабеля «змейкой», а по кабельным конструкциям (кронштейнам) этот запас создаётся образованием стрелы провеса.

ВНИМАНИЕ! Укладывать запас кабеля в виде колец (витков) запрещается!

- Кабельные металлические конструкции должны быть заземлены в соответствии с ПУЭ и СНиП 3.05.06.
- При прокладке кабельной линии кабели трёх фаз должны прокладываться параллельно и располагаться треугольником или в одной плоскости, как показано на рисунке 3.
- При прокладке в плоскости расстояние в свету между двумя соседними кабелями одной кабельной линии должно быть не менее наружного диаметра кабеля.

а). Прокладка треугольником



б). Прокладка в плоскости

Рисунок 3. Способы прокладки кабелей.

- 1. Кабель;
- 2. Металлический хомут (скоба);
- 3. Прокладка из эластичного материала;
- 4. Металлический хомут (скоба) из немагнитного материала.

Рисунок 4. Способы скрепления кабелей хомутами.

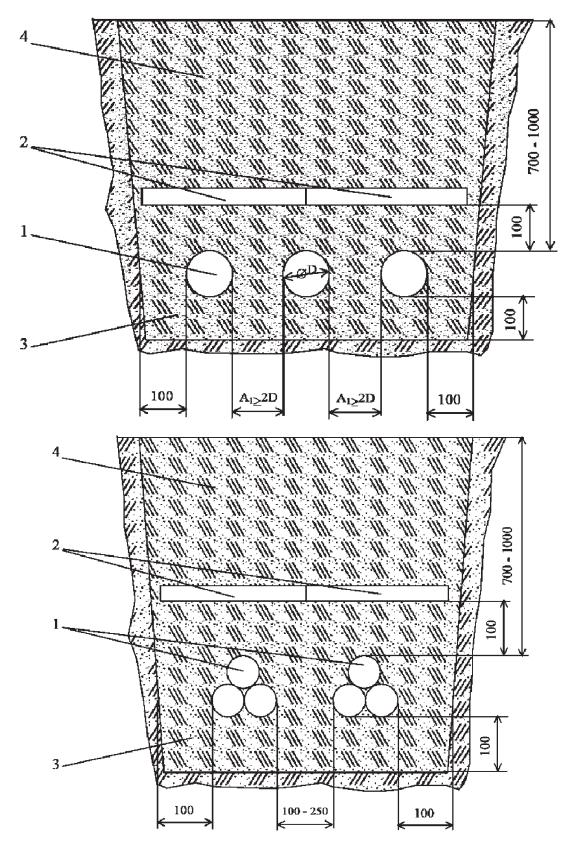
- При расположении треугольником кабели скрепляются по длине кабельной линии (за исключением участков около муфт) на расстоянии 1-1,5 м, на изгибах трассы - 1 м. При прокладке в земле следует учесть, что при засыпке грунтом кабели не должны менять своего положения.
- Кабели, проложенные в плоскости в кабельных сооружениях на воздухе, должны быть закреплены по длине линии на расстоянии 1-1,5 м.
- Отдельные кабели должны прокладываться так, чтобы вокруг каждого из них не было замкнутых металлических контуров из магнитных материалов.
- При закреплении кабелей необходимо учитывать возможное тепловое расширение кабелей и механические нагрузки, возникающие в режиме короткого замыкания.

3.2. Способы прокладки кабелей

Кабели с изоляцией из сшитого полиэтилена могут прокладываться в земле (траншее), в кабельных помещениях (туннели, галереи, эстакады), в блоках (трубах), в производственных помещениях (в кабельных каналах, по стенам). Способ прокладки кабелей выбирается на стадии проектирования кабельной линии.

При этом необходимо руководствоваться следующим:

- При прокладке кабелей в земле рекомендуется в одной траншее прокладывать не более шести кабелей. При большем количестве кабелей рекомендуется прокладывать их в отдельных траншеях или в каналах, туннелях, по эстакадам и в галереях.
- Прокладка кабелей в туннелях, по эстакадам и галереям рекомендуется при количестве кабелей, идущих в одном направлении более двадцати.
- Прокладка кабелей в блоках применяется в условиях большой стеснённости по трассе, в местах пересечений с железнодорожными путями и проездами, при вероятности разлива металла и тому подобное.
- Крепление кабелей должно быть выполнено таким образом, чтобы не допускать деформации кабелей под действием собственного веса, а также в результате механических напряжений, возникающих при циклах «нагрев-охлаждение» и при электромагнитных взаимодействиях при коротких замыканиях.


3.2.1. Прокладка кабелей в земле

- При прокладке кабельных линий в земле кабели прокладываются в траншеях и должны иметь снизу подсыпку, а сверху засыпку из песчано-гравийной смеси или мелкого грунта, не содержащего камней, строительного мусора и шлака. Кабели на всем протяжении должны быть защищены от механических повреждений железобетонными плитами, кирпичами или пластмассовыми сигнальными лентами. Бестраншейная прокладка кабелей с помощью ножевых кабелеукладчиков не допускается.
- Глубина прокладки кабелей в грунте должна быть не менее 0,7 м для кабелей на номинальное напряжение до 10 кВ. При меньшей глубине прокладки или при пересечении трассы с инженерными сооружениями или естественными препятствиями должна быть предусмотрена дополнительная защита (например, прокладка в трубах).
- Кабели на всей длине должны быть защищены от механических повреждений путём покрытия железобетонными плитами, кирпичами или пластмассовыми сигнальными лентами.
- В грунте, предназначенном для засыпки кабеля, не должно быть камней и других материалов, которые могут повредить кабель.
- При прокладке кабелей в траншее концы кабелей, предназначенные для последующего монтажа соединительных муфт, следует располагать со сдвигом мест соединения, при этом должен быть оставлен запас кабеля длиной на каждом конце не менее 350 мм для кабелей на номинальное напряжение до 10 кВ включительно.
- Для монтажа соединительных муфт на трассе должны быть подготовлены котлованы, соосные с траншеей, шириной не менее 1,5 м для кабелей на номинальное напряжение до 10 кВ включительно и не менее 1,7 м для кабелей на большее номинальное напряжение. Длина котлована для монтажа трех муфт вразбежку не менее 5 м для кабелей на номинальное напряжение до 10 кВ включительно и не менее 7 м для кабелей на большее номинальное напряжение.
- Для защиты кабелей при пересечении дорог, инженерных сооружений и естественных препятствий, а также для изготовления кабельных блоков должны применяться трубы (асбоцементные, керамические, пластмассовые или из иного немагнитного материала).
 Допускается при прокладке трех фаз одной цепи в одну трубу использование труб из магнитных материалов.
- Внутренний диаметр трубы при прокладке одного кабеля должен быть не менее 1,5**D**_н, но не менее 50 мм при длине труб до 5 м и 100 мм при большей длине труб. Внутренний диаметр трубы при прокладке трёх кабелей треугольником должен быть не менее 3**D**_н, но не менее 150 мм.

3.2.1.1. Условия прокладки кабелей в вечномёрзлых грунтах

Глубина прокладки кабелей в вечномерзлых грунтах определяется при проектировании кабельной линии с учётом конкретных грунтовых и климатических условий.

- Местный грунт, используемый для обратной засыпки траншей должен быть размельчён и уплотнён. Наличие в траншее льда и снега не допускается.
- Грунт для насыпи следует брать из мест, удаленных от оси трассы кабеля не менее чем на 5 м. Грунт в траншее после осадки должен быть покрыт мохоторфяным слоем.
- В качестве дополнительных мер против возникновения морозобойных трещин следует применять:
 - засыпку траншеи с кабелем песчаным или гравийно-галечным грунтом;
 - устройство водоотводных канав или прорезей глубиной до 0,6 м, расположенных с обеих сторон трассы на расстоянии 2–3 м от её оси;
 - обсев кабельной трассы травами и обсадку кустарником.

- 1. Кабели
- 2. Железобетонные плиты перекрытия или кирпичи
- 3. Песчано-гравийная смесь или рыхлый грунт
- 4. Засыпной грунт

Рисунок 5. Варианты прокладки кабелей в траншее (все размеры даны в миллиметрах).

3.2.2. Условия прокладки кабелей в кабельных сооружениях и производственных помещениях

- При прокладке кабелей на воздухе в кабельных сооружениях и произодственных помещениях, необходимо обеспечить дополнительные меры противопожарной защиты, путём нанесения специальных огнезащитных покрытий, согласованных с пожарной инспекцией и заводом-изготовителем.
- Кабели в кабельных сооружениях рекомендуется прокладывать целыми строительными длинами, стараясь избегать применнение в них соединительных муфт.
- Соединительные муфты кабелей, прокладываемых в блоках, должны быть расположены в колодцах.
- На трассе, состоящей из проходного туннеля, переходящего в полупроходной туннель или непроходной канал, соединительные муфты должны быть расположены в проходном туннеле.
- Конструкции для крепления кабелей и каркасы противопожарных перегородок должны быть установлены перед прокладкой кабеля в кабельном тоннеле.

ВНИМАНИЕ! Запрещаются любые сварочные работы в тоннеле после прокладки кабелей.

- Кирпичная кладка перегородок может быть выполнена после прокладки кабелей при соблюдении соответствующих мер предосторожности.
- Расстояние между опорными конструкциями выбираются в соответствии с проектом и требованиями ПУЭ. Металлические конструкции, на которые укладываются кабели, должны быть выполнены таким образом, чтобы исключить возможность повреждения оболочек кабелей острыми краями, заусенцами и пр.
- При монтаже соединительных муфт в кабельных сооружениях, необходимо установить отдельные полки на опорной конструкции для каждой муфты.
- Кабели, прокладываемые горизонтально по конструкциям, стенам, перекрытиям, фермам и т. п., следует жестко закреплять в конечных точках, непосредственно у концевых муфт, на поворотах трассы (с обеих сторон изгиба) и у соединительных муфт, а также по трассе с учётом выше приведенных требований.
- Кабели проложенные горизонтально по конструкциям на открытых эстакадах, кроме крепления в местах, указанных выше, должны быть дополнительно закреплены во избежание смещения под действием ветровых нагрузок на прямых горизонтальных участках трассы в соответствии с указаниями, приведенными в проектной документации.
- Кабели, не связанные в треугольник, должны быть закреплены на конструкциях в местах, расположенных по длине кабельной линии с шагом от 1 до 1,5 м (при расположениии на лотках, в коробках или на сплошных полках).
- При укладке кабелей на консоли кабели должны быть закреплены на каждой консоли. Расстояние между консолями должно быть не более 1 м, полезная длина консоли на прямых участках трассы не более 500 мм.
- Кабели, прокладываемые вертикально по конструкциям и стенам, должны быть закреплены на каждой кабельной конструкции. Крепление кабелей должно быть выполнено таким образом, чтобы была предотвращена деформация оболочек и не нарушались соединения жил в муфтах под действием собственного веса кабеля. Места креплений определяются на этапе проектирования.
- В местах жесткого крепления кабелей на конструкциях должны быть проложены прокладки из эластичного материала (например, мягкая резина). Прокладки должны выступать за края хомутов или скоб по ширине приблизительно на 5 мм.
- Кабели внутри помещений и снаружи для предотвращения возможных механических повреждений (передвижение автотранспорта, грузов и механизмов, доступность для

- неквалифицированного персонала), должны быть защищены до безопасной высоты, но не менее 2м от уровня земли или пола и на глубине 0,3м в земле.
- Проходы кабелей через стены, перегородки и перекрытия в производственных помещениях и кабельных сооружениях должны осуществляться через отрезки труб (пластмассовых, асбоцементные безнапорных и т.п.) или открытые проёмы. Зазоры в отрезках труб, отверстиях и проёмы после прокладки кабелей должны быть заделаны несгораемым материалом (например, цементом с песком, глиной с песком и т.п.) по всей толщине стены или перегородки.
- Вводы кабелей в здания, кабельные сооружения и другие помещения должны быть выполнены в асбоцементных, бетонных, керамических или пластмассовых трубах. Концы труб должны выступать в траншею из стены здания или фундамента (при наличии отмостки – за линию последней) не менее чем на 0,6 м, и иметь уклон в сторону траншеи.

3.2.3. Условия прокладки в трубах и блоках

- При прокладке кабелей в блочной канализации должна быть определена общая длина канала блока по условиям предельно допустимых усилий тяжения, исходя из конструктивных параметров кабелей и условий прокладки. Предельная длина канала блока и усилия тяжения должны быть определены на стадии проектирования кабельной линии.
- Для уменьшения усилий тяжения при протягивании кабелей через трубы и блочные каналы следует покрывать поверхности кабелей смазкой, не содержащей веществ вредно действующих на оболочку кабелей (для кабелей с ПЭ оболочкой возможно использовать технический вазелин; для кабелей с ПВХ оболочкой – тавот, солидол, технический вазелин). Для этих же целей вместо смазки возможно проливать через каналы или трубы воду.

ВНИМАНИЕ! При протяжке в трубу или канал блока трёх фаз кабеля запрещается последовательная протяжка отдельных кабелей с использованием стального троса из-за возможности повреждения тросом уже проложенных кабелей.

- При длине труб до 20 м возможна последовательная протяжка отдельных кабелей вручную с использованием верёвки.
- Скорость протяжки должна быть не более 17 м/мин и кабель необходимо протягивать по возможности без остановок.

3.3. Условия прокладки кабелей при низких температурах

- Прокладка кабелей без предварительного прогрева разрешается при следующих температурах:
 - кабели с наружной оболочкой из поливинилхлоридного пластиката, в том числе кабели с индексом «ХЛ», с наружной оболочкой из поливинилхлоридного пластиката пониженной горючести, в том числе кабели с индексом «ХЛ», с наружной оболочкой из поливинилхлоридного пластиката пониженной пожарной опасности и полимерной композиции, могут быть проложены без предварительного подогрева при температуре окружающей среды не ниже минус 15°C;
 - кабели с наружной оболочкой из полиэтилена, могут быть проложены без предварительного подогрева при температуре окружающей среды при температуре не ниже минус 20°C;
- При температурах от минус 15°C до минус 40°C прокладка кабеля допускается только после предварительного прогрева кабеля.
- Для прогрева барабанов с кабелем должен быть сооружен тепляк с обогревом печами или тепловоздуходувками. Не допускается обогрев с применением открытого тепла.

Продолжительность прогрева кабеля в тепляке при температуре от плюс 25°C до плюс 40°C не менее 18 часов. Контроль температуры должен производиться термометром, установленным на витках кабеля.

- Прокладка должна быть выполнена в срок не более 30 минут после прогрева, после чего кабель должен быть немедленно засыпан первым слоем песчано–гравийной смеси или разрыхленного грунта.
- Прокладка кабелей при температуре ниже минус 40 °C запрещается.

4. МЕРЫ БЕЗОПАСНОСТИ

При выполнении работ по прокладке кабельных линий следует соблюдать правила техники безопасности согласно следующих документов:

- Правила техники безопасности при электромонтажных и наладочных работах (М.: Минмонтажспецстрой СССР, 1990 г.);
- Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок ПОТ РМ-016;
- СНиП III-4 Техника безопасности в строительстве (с изменениями и дополнениями);
- Правила пожарной безопасности в Российской Федерации;
- Правила безопасности при работе с инструментом и принадлежностями (М.: Энергоатомиздат, 1988 г.).

5. ПРИЁМКА ТРАССЫ

- Перед началом прокладки кабелей трасса кабельной линии должна быть принята от строителей по акту.
- Трасса должна соответствовать проектной документации и требованиям настоящей инструкции.
- До прокладки кабелей должны быть выполнены следующие работы:
 - установлены опорные стойки для концевых муфт;
 - выполнены пересечения с другими коммуникациями;
 - подготовлены проходы для вводов кабелей в здания и сооружения, и в них вставлены трубы;
 - в кабельных сооружениях смонтированы опорные конструкции согласно проекту;
 - из траншей откачана вода, удалены камни, прочие посторонние предметы и строительный мусор;
 - сделана подсыпка из песчано-гравийной смеси толщиной 100 мм.
 - проходимость блочных труб должна быть проверена специальными калибрами.

6. ПРОКЛАДКА КАБЕЛЯ

6.1. Общие условия

- Примерная схема расстановки рабочих при протяжке кабеля:
 - барабан, на тормозе 1 человек;
 - рольганги на сходе кабеля с барабана 1 человек;
 - спуск кабеля в траншею (вход, выход из туннеля) 1 человек;
 - на лебёдке 2 человека;
 - сопровождение конца кабеля 1 человек;
 - на каждом углу поворота 1 человек;
 - на каждом проходе в трубах через перегородки или перекрытия, у входа в камеру или здание 1 человек;

- на прямых участках по необходимости.
- При одновременном тяжении трех кабелей за устройством для группирования кабелей должны находиться 2 человека для скрепления кабеля в треугольник (если это предусмотрено проектом).
- Руководитель работ сопровождает движение конца кабеля по трассе. Команду на включение лебедки при протяжке даёт только руководитель работ. Команду на остановку лебёдки может дать любой, заметивший неполадки при протяжке.
- Скорость прокладки не должна превышать 30 м/мин и должна выбираться в зависимости от характера трассы, погодных условий и усилий тяжения.
- В случае, если усилие тяжения превышает допустимую величину, то необходимо остановить прокладку и проверить правильность установки и исправность линейных и угловых роликов, наличие смазки (воды) в трубах, а также проверить возможность заклинивания кабеля в трубах. Дальнейшая протяжка кабеля возможна только после устранения причин превышения допустимых усилий тяжения.
- Барабан с кабелем необходимо подтормаживать так, чтобы не было рывков, ослабления и провисания витков кабеля и в то же время не создавать чрезмерных усилий торможения.
- При спуске кабеля в траншею или входе в туннель необходимо следить, чтобы кабель не соскальзывал с роликов не терся о трубы и стенки в проходах.
- На входе в асбоцементные, керамические или пластмассовые трубы необходимо следить за тем, чтобы не повреждались защитные покровы кабелей.
- При повреждении оболочки кабеля необходимо остановить прокладку, осмотреть место повреждения и принять решение о способе ремонта оболочки (приложение А).
- Сопровождающие конец кабеля должны следить за тем, чтобы кабель шел по роликам, при необходимости подправляют ролики, а также направляют конец кабеля специальным крюком.
- Кабель вытягивается таким образом, чтобы при укладке его по проекту расстояние от верха концевой муфты или от условного центра соединительной муфты было не менее 2 м.
- Отсоединить тяговый трос и снять чулок или захват с конца кабеля. В случае, если на барабане находится кабель для нескольких участков трассы, или если длина кабеля существенно больше длины участка, необходимо обрезать кабель.
- После обрезки кабеля закапировать концы кабелей. Для более надежной герметизации концов кабелей возможно применить двойное капирование.
- Внутреннюю капу осадить на электропроводящий слой по изоляции кабеля, а наружную капу – на внутреннюю капу и на оболочку кабеля. Возможно также перед капированием нанести на обрез кабеля слой расплавленного битума.
- При необходимости концы кабеля завести в камеры, колодцы, кабельные помещения. При этом необходимо соблюдать допустимые радиусы изгиба кабеля.
- Снять кабель с роликов, уложить и закрепить его по проекту.
- При прокладке в траншее произвести присыпку кабеля песчано-гравийной смесью или мелким грунтом толщиной не менее 100 мм и провести испытания оболочки кабеля.

Оболочка строительной длины кабеля должна выдержать испытание напряжением постоянного тока 10 кВ в течение 1 минуты. Испытательное напряжение прикладывается между металлическим экраном кабеля и заземлителем.

В случае, если оболочка кабеля испытание не выдержала, необходимо определить место повреждения, произвести ремонт оболочки и повторить испытание. Рекомендуемые приборы РЕЙС 205.

После испытания оболочки, проложенный в траншее кабель засыпать первым слоем земли, уложить механическую защиту (плиты, кирпичи) или сигнальную ленту и произвести окончательную засыпку траншеи.

6.2. Подготовительные работы

Вывозить барабаны на трассу рекомендуется не более чем за один день до прокладки, чтобы избежать возможных повреждений при длительном хранении барабанов на трассе.

- Произвести внешний осмотр барабанов с кабелем. Убедиться в отсутствии повреждений обшивки и целостности кап на концах кабелей.
- Установить барабаны с кабелем на отдающие устройства так, чтобы при размотке конец кабеля сходил сверху.
- Расставить на трассе кабеля оборудование и приспособления для прокладки согласно ППР.
- Для обеспечения плавного схода кабеля с барабана установить направляющие рольганги, ширина первого из них должна быть не менее ширины барабана.
- Расставить по трассе линейные ролики. Расстояние между роликами должно быть не более 4м. На поворотах трассы установить угловые ролики, обеспечивающие поворот кабеля с радиусом не более допустимого. Ролики должны свободно и легко вращаться.
- При прокладке кабеля в туннеле или блоках установить другое оборудование согласно ППР (распорные крепления, воронки, специальные направляющие ролики и т. д.).
- Установить тяговое устройство (лебёдку) у конца трассы или за кабель-ным колодцем.
- Установить телефонную или УКВ связь между местами расположения лебедки, барабанов, поворотов, перегородок и переходов трассы.
- Снять обшивку с барабана. Проверить крепление закладных втулок барабана, при необходимости подтянуть гайки на шпильках. Проверить крепление нижнего конца кабеля (при необходимости закрепить его).
- Установить на барабане тормозные устройства, предназначенные для регулирования скорости вращения барабана при протяжке и его остановки, а также для предотвращения инерционного раскручивания барабана.
- Смонтировать на конце кабеля проволочный чулок или клиновой захват.
 Забандажировать чулок тонкой стальной проволокой и липкой ПВХ лентой. Соединить чулок или захват коротким тросом с противозакручивающим устройством.
- Растянуть трос тяговой лебедки по трассе. Соединить его с противозакручивающим устройством.
- В случае одновременного тяжения трех кабелей чулки и захваты должны соединяться с противозакручивающим устройством в разбежку. На сходе кабелей с барабанов установить устройство для группирования кабелей в треугольник.
- Подготовить необходимые для прокладки инструменты и материалы.

6.3. Раскатка кабелей

Раскатка кабелей может производиться с движущегося кабельного транспортера, автомобиля или трубоукладчика в тех случаях, когда механизм может свободно двигаться вдоль трассы и когда в траншее нет сооружений, требующих протяжки через них кабелей (трубы, блоки, подземные сооружения).

- Скорость движения механизма при раскатке кабелей должна быть в пределах 0,6–1 км/ч, при этом расстояние между краем траншеи и колесом механизма должно быть не менее глубины траншеи, умноженной на коэффициент 1,25.
- При раскатке нельзя допускать рывков кабеля при сходе с барабана, которые могут привести к повреждению кабеля. Для этого необходимо следить, чтобы кабель плавно сматывался с барабана и имел провис.

■ При раскатке кабеля по дну траншеи вслед за кабелем должны двигаться рабочие, которые принимают сматываемый с барабана кабель и укладывают его на дно траншеи.

6.4. Монтаж муфт

По окончании прокладки кабеля и последующеего испытания оболочки проводится монтаж всех видов муфт, предусмотренных проектом.

- Монтаж должна осуществлять специализированная монтажная организация, имеющая соответствуещее оборудование, специализированный инструмент, необходимый материал, а также квалифицированный персонал, прошедший обучение в фирме-поставщике кабельной арматуры и допущенный к проведению данных работ на основании соответствующих сертификационных документов.
- При проведении монтажа муфт обязательным условием является наличие шеф-инженера фирмы-поставщика кабельной арматуры.
- При подготовке кабеля к монтажу соединительных и концевых муфт на определенной длине кабеля удаляется оболочка, медный экран и полупроводящие элементы, проволоки жилы скрепляются опрессовкой в гильзе. Полупроводящий экран по изоляции срезается при помощи специального инструмента. Элементы конструкции, выполненные обмоткой, повивы проволок брони и медного экрана закрепляются бандажами, а незакреплённые части удаляются. Для заземления экрана медные проволоки отгибаются на наружную оболочку, закрепляются бандажом, а незакрепленные концы проволок скручиваются в жгут. При наличии брони должен быть обеспечен ее контакт с медным экраном в месте заземления.
- Во время монтажа арматуры должна обеспечиваться тщательная зачистка поверхностей проволок и лент экрана и жилы кабеля, соединителей и зажимов арматуры.
- Способ соединения жил должен обеспечивать достаточную проводимость и механическую прочность соединения.
- При монтаже муфт кабелей необходимо обеспечить выравнивание неравномерного электрического поля в месте соединения жил и в области среза экрана, герметичность и отсутствие воздушных включений.
- Корпуса муфт наружной установки должны быть стойкими к действию атмосферных условий, солнечного излучения, к трекингу и эрозии.
- Элементы соединительных муфт, восстанавливающие медный экран, должны обеспечивать достаточную проводимость для отведения токов короткого замыкания и хороший контакт с экраном кабеля.
- Комплекты муфт должны быть снабжены подробной инструкцией по их монтажу.
- Экран кабеля должен быть заземлен на обоих концах линии. Заземление должно обеспечивать отведение токов короткого замыкания (то есть должна быть обеспечена достаточная проводимость заземляющего проводника, экран и заземляющий проводник не должны иметь разрывов и участков с высоким электросопротивлением). Желательно также дополнительное заземление экрана по длине линии.
- Рекомендуется принять меры по снижению риска коррозии заземляющих элементов, особенно в случае применения разнородных металлов.
- Конструкция зажимов муфт должна обеспечивать соответствующее соединение с элементами экрана, и переходное сопротивление в месте соединения не должно превышать сопротивления экрана кабеля. Должно обеспечиваться достаточное обжатие зажимов для создания соответствующего электрического контакта.
- Материал зажимов и соединителей должен обеспечивать:
 - электрическое сопротивление, не превышающее электрического сопротивления материала экрана;
 - достаточную теплоёмкость для избежания перегрева во время короткого замыкания.

6.5. Испытания кабеля после прокладки

- Кабели после прокладки и монтажа арматуры рекомендуется испытывать переменным напряжением 2U₀ номинальной частотой 50 Гц в течение 60 мин, или переменным напряжением U₀ номинальной частотой 50 Гц в течение 24 ч, или переменным напряжением 3U₀ номинальной частотой 0,1 Гц в течение 60 мин, где U₀ номинальное напряжение кабеля между жилой и экраном в нормальном режиме эксплуатации, кВ.
- Наружная оболочка кабелей, проложенных в земле, должна быть испытана постоянным напряжением 10 кВ в течение 1 мин. Испытательное напряжение должно быть приложено между металлическим экраном или броней и заземлителем.

ВНИМАНИЕ! После испытания постоянным напряжением необходимо заземлить токопроводящую жилу или соединить её с медным экраном на время не менее 1 часа.

7. ЭКСПЛУАТАЦИЯ КАБЕЛЕЙ

7.1. Общие положения по эксплуатации КЛ

- При эксплуатации КЛ следует руководствоваться общими положениями Правил техники безопасности при эксплуатации электроустановок и Правил технической эксплуатации электротехнических станций и сетей и Инструкцией по эксплуатации силовых кабельных линий.
- Эксплуатирующая организация должна производить технический надзор за прокладкой и монтажом КЛ согласно настоящей инструкции.
- После ознакомления с технической документацией эксплуатирующая организация перед включением КЛ под нагрузку проводит осмотр трассы и сооружений и испытания КЛ.
 Результаты испытаний оформляют протоколом, который передается в эксплуатирующую организацию.
- Данные по эксплуатации КЛ вносятся в техническую документацию. В паспорте КЛ должны быть приведены следующие данные: номер или наименование КЛ, длина КЛ и наименование цепей, основные конструктивные параметры кабеля (марка, напряжение и сечение), дата ввода в эксплуатацию, протяженнность отдельных строительных длин, данные о прокладке кабеля (номера барабанов, строительные длины, номера секций цепей, дата прокладки, усилия тяжения, условия прокладки), план трассы в масштабе 1:5000 или 1:2000, схема фазировки, укрупненный продольный профиль, сведения об отклонениях при прокладке КЛ по глубине, данные о сопротивлении заземлении и проверке металлической связи с заземлением ПС, характеристики «узких мест», ограничивающих токовую нагрузку, длительно допустимый ток нагрузки и допустимый ток перегрузки.
- В процессе эксплуатации в паспорт вносят данные об испытании изоляции и оболочки напряжением, результаты измерения температуры нагрева кабелей и температуры окружающей среды, результаты измерения токов нагрузки и перегрузки КЛ, сведения о земляных работах на трассе и о повреждениях и ремонтах КЛ.
- Открыто проложенные кабели, а также все кабельные муфты должны быть снабжены бирками с обозначениями на них: в конце и начале КЛ должны быть указаны марка кабеля, напряжение, сечение, номер или наименование КЛ, обозначение фазы; на бирках соединительных муфт номер муфты и дата её монтажа.

Эксплуатация КЛ осуществляется согласно перечню работ с указанием периодичности работ, приведенных ниже. Наименование и периодичность работ при техническом обслуживании КЛ приведены в таблице 4.

Таблица 4. Наименование и периодичность работ КЛ.

Наименование работ	Периодичность работ	Примечания		
Осмотр трассы КЛ, проло- женных в земле	1 раз в месяц	Внеочередные осмотры проводятся после каждого аварийного отключения		
Осмотр КЛ в коллекторах, туннелях, колодцах	1 раз в 3 месяца	Внеочередные осмотры проводятся после каждого аварийного отключения		
Измерение сопротивления заземления концевых муфт	При капитальном ремонте заземляющих устройств	_		
Проверка металлической связи металлоконструкций с заземляющим устройством ПС	1 раз в 3 года	_		
Определение температуры жилы	В соответствии с местными инструкциями с систематическим контролем в местах сближения с теплопроводами	_		
Испытания изоляции КЛ	Перед вводом в эксплуата- цию, затем в соответствии с местными инструкциями	Внеочередные испытания проводятся после каждого аварийного отключения, ремонта кабеля и арматуры		
Испытания оболочки кабеля КЛ выпрямленным напряжением	Перед вводом в эксплуатацию, через год, затем в соответствии с местными инструкциями	Внеочередные испытания проводятся после каждого аварийного отключения, ремонта кабеля и арматуры		
Капитальный ремонт	По мере необходимости	_		

7.2. Эксплуатационные характеристики кабелей

- Длительно допустимая температура нагрева жил кабелей 90°С. Предельно допустимая температура жил кабелей при коротком замыкании – 250°C, предельно допустимая температура медного экрана кабеля при коротком замыкании – 350°C, предельная температура нагрева жилы при коротком замыкании по условиям невозгораемости кабеля – 400°C при протекании тока короткого замыкания в течение до 5 с.
- Допустимый нагрев жил кабеля в режиме перегрузки не более 130°C.
- Продолжительность работы кабеля в режиме перегрузки должна быть не более 8 часов в сутки и не более 1000 ч за срок службы.

Расчётные значения ёмкости кабелей с круглыми жилами приведены в таблице 5 в качестве справочных значений.

Таблица 5. Расчётные значения ёмкости кабелей с круглыми жилами.

	6 r	κВ	10	кВ	15	кВ	20	кВ	35	кВ
Ном. сече- ние, мм ²	С _{0,} мкФ	I _{C,} A								
35	0,29	0,947	0,22	1,197	_	_	_	_	_	_
50	0,32	1,044	0,25	1,360	0,20	1,632	0,17	1,850	0,14	2,666
70	0,37	1,208	0,29	1,578	0,23	1,877	0,19	2,067	0,16	3,046
95	0,41	1,338	0,32	1,741	0,25	2,040	0,21	2,285	0,18	3,427
120	0,45	1,469	0,35	1,904	0,27	2,203	0,23	2,502	0,19	3,618
150	0,50	1,632	0,38	2,067	0,30	2,448	0,26	2,829	0,20	3,808
185	0,54	1,763	0,42	2,285	0,32	2,611	0,27	2,938	0,22	4,189
240	0,59	1,926	0,46	2,502	0,35	2,856	0,29	3,155	0,24	4,570
300	0,60	1,958	0,51	2,774	0,38	3,101	0,32	3,482	0,26	4,950
400	0,64	2,089	0,57	3,101	0,42	3,427	0,35	3,808	0,29	5,522
500	0,66	2,154	0,63	3,427	0,47	3,835	0,39	4,243	0,32	6,093
630	0,73	2,383	0,70	3,808	0,52	4,243	0,43	4,678	0,35	6,664
800	0,82	2,676	0,77	4,189	0,58	4,733	0,49	5,331	0,40	7,616

Обозначения физических величин

Таблица 6. Электрическое сопротивление токопроводящих жил.

Номинальное сечение жилы, мм²	Электрическое сопротивление постоянному току 1 км жилы при 90°C, Ом			
сечение жилы, мм	Медная жила	Алюминиевая жила		
35	0,668	1,112		
50	0,493	0,821		
70	0,342	0,567		
95	0,246	0,410		
120	0,195	0,324		
150	0,158	0,264		
185	0,126	0,210		
240	0,096	0,160		
300	0,077	0,128		
400	0,060	0,100		
500	0,047	0,077		
630	0,036	0,060		
800	-	0,047		

 $[\]emph{\textbf{C}}_{ ext{0}}$ – расчётное значение ёмкости 1 км кабеля, мкФ $\emph{\textbf{I}}_{ ext{C}}$ – ёмкостной ток замыкания на землю 1 км кабеля, А/км

Таблица 7. Расчётные значения индуктивности одножильных кабелей с круглыми жилами.

Номинальное		Индукти	ивность,	мГн/км,	кабелей	на номи	нальное	напряже	ение, кВ	
сечение жилы,	61	κВ	10	кВ	15	кВ	20	кВ	35	кВ
MM ²	000	%	000	%	000	%	000	%	000	%
35	0,604	0,448	0,620	0,465	0,637	0,485	0,652	0,501	_	_
50	0,578	0,421	0,594	0,437	0,611	0,456	0,625	0,472	0,669	0,518
70	0,552	0,391	0,567	0,407	0,583	0,426	0,597	0,441	0,639	0,486
95	0,533	0,370	0,547	0,386	0,563	0,403	0,576	0,418	0,617	0,462
120	0,508	0,342	0,521	0,357	0,536	0,373	0,549	0,387	0,587	0,430
150	0,497	0,329	0,509	0,343	0,524	0,359	0,536	0,373	0,573	0,415
185	0,482	0,312	0,494	0,325	0,508	0,341	0,519	0,354	0,555	0,395
240	0,469	0,296	0,479	0,308	0,492	0,323	0,503	0,336	0,537	0,375
300	0,461	0,286	0,468	0,294	0,480	0,309	0,490	0,321	0,523	0,359
400	0,451	0,275	0,455	0,280	0,467	0,294	0,477	0,305	0,508	0,342
500	0,440	0,261	0,442	0,264	0,453	0,277	0,462	0,288	0,492	0,323
630	0,427	0,245	0,429	0,247	0,439	0,260	0,447	0,270	0,475	0,303
800	0,418	0,234	0,42	0,236	0,429	0,248	0,437	0,258	0,463	0,289

При других условиях прокладки индуктивность рассчитывается по формуле:

$$L = 0.1 + 0.2 \times \ln\left(\frac{h - r}{r}\right)$$

где L – индуктивность, мГн/км; h – расстояние между центрами жил, мм; r – радиус жилы, мм.

Таблица 8. Расчётные значения индуктивного сопротивления одножильных кабелей с круглыми жилами.

Номинальное	Pe	активно	е индукт	ивное со	противл	ение, Ок	и/км, одн	южильн	ых кабел	ей
сечение жилы,	6 i	κВ	10	кВ	15	кВ	20	кВ	35	кВ
MM ²	000	%	000	%	000	%	000	%	000	%
35	0,190	0,141	0,195	0,146	0,200	0,152	0,205	0,157	_	_
50	0,182	0,132	0,187	0,137	0,192	0,143	0,196	0,148	0,210	0,163
70	0,173	0,123	0,178	0,128	0,183	0,134	0,188	0,139	0,201	0,153
95	0,167	0,116	0,172	0,121	0,177	0,127	0,181	0,131	0,194	0,145
120	0,160	0,107	0,164	0,112	0,168	0,117	0,172	0,122	0,184	0,135
150	0,156	0,103	0,160	0,108	0,165	0,133	0,168	0,117	0,180	0,130
185	0,151	0,098	0,155	0,102	0,160	0,107	0,163	0,111	0,174	0,124
240	0,147	0,093	0,150	0,097	0,155	0,101	0,158	0,106	0,169	0,118
300	0,145	0,090	0,147	0,092	0,151	0,097	0,154	0,101	0,164	0,113
400	0,142	0,086	0,143	0,088	0,147	0,092	0,150	0,096	0,160	0,107
500	0,138	0,082	0,139	0,083	0,142	0,087	0,145	0,090	0,155	0,101
630	0,134	0,077	0,135	0,078	0,138	0,082	0,140	0,085	0,149	0,095
800	0,131	0,074	0,132	0,074	0,135	0,078	0,137	0,081	0,145	0,091

Обозначение расположения прокладки: в плоскости $-\circ\circ\circ$, треугольником $-\otimes$.

Таблица 9. Расчётные значения индуктивности трёхжильных кабелей с круглыми жилами.

Ном. сечение	Индуктивност	ь, мГн/км, трёхжи	льных кабелей н	а номинальное н	апряжение, кВ
жилы, мм²	6κB	10кВ	15 ĸB	20 kB	35 kB
35	0,382	0,406	0,431	0,452	_
50	0,357	0,380	0,404	0,424	0,482
70	0,331	0,352	0,376	0,395	0,451
95	0,312	0,333	0,355	0,374	0,428
120	0,287	0,307	0,328	0,345	0,397
150	0,276	0,294	0,315	0,332	0,382
185	0,261	0,279	0,299	0,315	0,363
240	0,249	0,264	0,282	0,298	_

Длительно допустимые токи кабелей рассчитаны при коэффициенте нагрузки K = 1,0 для температуры окружающей среды:

- 25°C при прокладке на воздухе,
- 15°C при прокладке в земле.

Расчётные условия при прокладке кабелей в земле:

- глубина прокладки 0,7 м;
- удельное термическое сопротивление нормализованного грунта 1,2 К•м/Вт.

Таблица 10. Расчётные значения индуктивного сопротивления трёхжильных кабелей с круглыми жилами.

Ном. сечение	Реактивное инду	ктивное сопротивл	ение, Ом/км, кабел	ей на номинально	е напряжение, кВ
жилы, мм²	6кВ	10 кВ	15 KB	20 кВ	35 KB
35	0,120	0,128	0,135	0,142	_
50	0,112	0,119	0,127	0,133	0,151
70	0,104	0,111	0,118	0,124	0,142
95	0,098	0,105	0,112	0,117	0,134
120	0,090	0,096	1,103	0,108	0,125
150	0,087	0,092	0,099	0,104	0,120
185	0,082	0,088	0,094	0,099	0,114
240	0,078	0,083	0,089	0,094	_

Допустимые токи одножильных кабелей рассчитаны при прокладке их треугольником вплотную, при прокладке в плоскости – при расстоянии между кабелями в свету, равном диаметру кабеля. При этом металлические экраны кабелей соединены с двух сторон кабелей и заземлены.

Таблица 11. Длительно допустимые токи одножильных кабелей при прокладке в земле.

Have			Дли	тельно д	допусти	мый ток	/ при пр	окладк	в земл	ie, A			
Ном.		61	кB			10 и 15 кВ				20 и 35 кВ			
жилы,	Си-ж	кила	<i>Al</i> -₩	кила	Си->	кила	<i>AI</i> -₩	кила	Си->	кила	<i>Al</i> -⊁	кила	
MM ²	000	%	000	%	000	%	000	%	000	%	000	%	
35	221	193	172	147	220	193	172	147	_	_	_	_	
50	250	225	195	170	250	225	195	170	230	225	185	175	
70	310	275	240	210	310	275	240	210	290	270	225	215	
95	336	326	263	253	336	326	263	253	336	326	263	253	
120	380	370	298	288	380	370	298	288	380	371	298	288	
150	416	413	329	322	416	413	329	322	417	413	330	322	
185	466	466	371	364	466	466	371	364	466	466	371	365	
240	531	537	426	422	531	537	426	422	532	538	426	422	
300	590	604	477	476	590	604	477	476	582	605	477	476	
400	633	677	525	541	633	677	525	541	635	678	526	541	
500	697	759	587	614	697	759	587	614	700	762	588	615	
630	792	848	653	695	762	848	653	695	766	851	655	699	
800	825	825 933 719 780 825 933 719 780 830 942 722 782											
Обозначе	значение материала жилы: «Cu» – медная, «Al» – алюминиевая.												

Таблица 12. Длительно допустимые токи одножильных кабелей при прокладке на воздухе.

Ном.			Длите	льно до	пустимь	ый ток <i>I</i>	при про	кладке і	на возд	ухе, А			
сеч.		61	κВ			10 и 15 кВ				20 и 35 кВ			
жилы,	Си-ж	кила	<i>AI</i> -₩	ила	Си->	кила	<i>AI</i> -₩	кила	Си->	кила	<i>AI</i> -₩	ила	
MM ²	000	%	000	%	000	%	000	%	000	%	000	%	
35	250	203	188	155	217	192	189	150	_	_	_	_	
50	290	240	225	185	290	240	225	185	290	250	225	190	
70	360	300	280	230	360	300	280	230	365	310	280	240	
95	448	387	349	300	448	387	349	300	446	389	348	301	
120	515	445	403	346	515	445	403	346	513	448	402	348	
150	574	503	452	392	574	503	452	392	573	507	451	394	
185	654	577	518	450	654	577	518	450	652	580	516	452	
240	762	677	607	531	762	677	607	531	760	680	605	533	
300	865	776	693	609	865	776	693	609	863	779	690	611	
400	959	891	787	710	959	891	787	710	957	895	783	712	
500	1081	1025	900	822	1081	1025	900	822	1081	1027	897	824	
630	1213	1166	1026	954	1213	1166	1026	954	1213	1172	1023	953	
800	1349	1319	1161	1094	1349	1319	1161	1094	1351	1325	1159	1096	

Таблица 13. Длительно допустимые токи трёхжильных бронированных и небронированных кабелей при прокладке в **земле**.

Ном. сече-		Длительно до	опустимый ток	<i>I</i> при прокладн	ке в земле, А				
ние жилы,		<i>Си</i> -жилы		АІ -жилы					
MM ²	6 кВ	10 и 15 кВ	20 и 35 кВ	6 кВ	10 и 15 кВ	20 и 35 кВ			
35	164	175	_	126	136	_			
50	192	207	207	148	156	161			
70	233	253	248	181	193	199			
95	279	300	300	216	233	233			
120	316	340	341	246	265	265			
150	352	384	384	275	300	300			
185	396	433	433	311	338	339			
240	457	500	500	358	392	392			
300	_	563	563	_	456	456			
400	_	635	635	_	515	515			

Таблица 14. Длительно допустимые токи трёхжильных бронированных и небронированных кабелей при прокладке на воздухе.

Ном. сече-		Длительно доп	устимый ток <i>I</i>	при прокладке	на воздухе, А	1		
ние жилы,		<i>Си</i> -жилы			АІ -жилы			
MM ²	6 кВ	10 и 15 кВ	20 и 35 кВ	6 кВ	10 и 15 кВ	20 и 35 кВ		
35	179	173	_	138	134	_		
50	213	206	215	165	159	163		
70	263	255	264	204	196	204		
95	319	329	331	248	255	256		
120	366	374	376	285	291	292		
150	413	423	426	321	329	331		
185	471	479	481	368	374	375		
240	550	562	564	432	441	442		
300	_	630	630	_	490	490		
400	_	710	710	_	554	554		

При определении допустимых токов для кабелей, проложенных в среде, температура которой отличается от приведенной, следует применять поправочные коэффициенты, приведенные в таблице 15.

Таблица 15. Поправочные коэффициенты на температуру грунта и окружающей среды для расчёта длительно допустимого тока в кабеле.

Условия		Поправочные коэффициенты при температуре среды, °С									
прокладки	10	15	20	25	30	35	40	45	50	55	60
Грунт	1,07	1,04	1	0,96	0,93	0,89	0,85	0,80	0,76	_	_
Воздух	_	_	1,08	1,04	1	0,96	0,91	0,87	0,82	0,76	0,71

Допустимые токи кабелей в режиме перегрузки при прокладке в грунте, в одноканальных керамических трубах и на воздухе могут быть рассчитаны путём умножения значений, указанных

- в таблицах 11, 12 на коэффициент 1,17
- указанных в таблицах 13 и 14 на коэффициент *1,20*

Допустимые токи кабелей, проложенных в земле в трубах длиной более 10 м, должны быть уменьшены путём умножения значений токов, указанных в таблице 9,

- на коэффициент 0,94, если одножильные кабели проложены в отдельных трубах;
- на коэффициент 0,9, если три одножильных кабеля проложены в одной трубе.

Допустимые токи трёхжильных кабелей, проложенных в земле в трубах, указаны в таблице 16.

Таблица 16. Длительно допустимые токи трехжильных кабелей, проложенных в земле в трубах.

Ном. сече-	Длі	ительно допуст	тимый ток / при	прокладке в з	вемле в труба	x , A			
ние жилы,		<i>Си</i> -жилы		АІ -жилы					
MM ²	6 кВ	10 и 15 кВ	20 и 35 кВ	6 кВ	10 и 15 кВ	20 и 35 кВ			
35	143	152	_	109	118	_			
50	168	180	180	129	135	140			
70	203	220	215	159	170	175			
95	246	264	264	190	205	205			
120	280	303	303	217	333	233			
150	313	342	342	244	267	267			
185	353	385	385	277	300	300			
240	411	450	450	321	353	353			
300	_	507	507	_	410	410			
400	_	578	578	_	468	468			

Допустимые токи нескольких кабелей проложенных в земле, включая проложенные в трубах, должны быть уменьшены путём умножения значений токов, указанных в таблице 12 на коэффициенты, приведенные в таблице 17.

Таблица 17. Коэффициенты снижения токов в зависимости от числа кабелей и от расстояния между ними.

Расстояние между	Поправочные коэффициенты при температуре среды, °С								
кабелями в свету, мм	1	2	3	4	5	6			
100	1,0	0,90	0,85	0,80	0,78	0,75			
200	1,0	0,92	0,87	0,84	0,82	0,81			
300	1,0	0,93	0,90	0,87	0,86	0,85			

Допустимые токи односекундного короткого замыкания кабелей должны быть не более указанных в таблице 18.

Таблица 18. Допустимые токи односекундного короткого замыкания.

Ном. сече-	Допустимый ток односекундного короткого замыкания, кА						
MM ²	<i>Си</i> -жила	АІ -жила					
35	5,0	_					
50	7,15	4,7					
70	10,0	6,6					
95	13,6	8,9					
120	17,2	11,3					
150	21,5	14,2					
185	26,5	17,5					
240	34,3	22,7					
300	42,9	28,2					
400	57,2	37,6					
500	71,5	47,0					
630	90,1	59,2					
800	_	75,2					

Таблица 19. Допустимые токи односекундного короткого замыкания в медном экране.

Номинальное сечение медного экрана, мм²	Ток односекундного короткого замыкания, не более, кА,
16	3,1
25	4,8
35	6,7
50	9,6
70	13,4
95	18,1
120	22,9
150	28,7
185	35,3
240	45,8

Токи короткого замыкания рассчитаны при температуре жилы до начала короткого замыкания 90°С и предельной температуре жилы при коротком замыкании 250°С. Допустимые токи односекундного короткого замыкания в медных экранах должны быть не более указанных в таблице 19.

Токи короткого замыкания рассчитаны при температуре экрана до начала короткого замыкания 50°С и предельной температуре экрана при коротком замыкании 350°С.

Для других значений сечения медного экрана кабелей допустимый ток односекундного короткого замыкания рассчитывают по формуле:

$$I_{\kappa,a} = \mathbf{k} \times \mathbf{S}_{a}$$

где $I_{\kappa,s}$ – допустимый ток односекундного короткого замыкания в медном экране, кА;

k – коэффициент, равный *0,191* кА/мм²;

 S_{3} – номинальное сечение медного экрана, мм².

Для продолжительности короткого замыкания, отличающейся от 1 с, значения тока короткого замыкания, указанные в таблицах 18 и 19, необходимо умножить на поправочный коэффициент \mathbf{K} , рассчитанный по формуле:

$$K = \frac{1}{\sqrt{\tau}}$$

где au – продолжительность короткого замыкания, с.

7.3. Муфты

7.3.1. Соединительные муфты для кабелей с изоляцией из сшитого полиэтилена

В качестве соединительных муфт рекомендуется применять модели отечественных и зарубежных производителей. Пример выбора соединительных муфт для кабелей 10кВ в таблице 20.

Таблица 20. Соединительные муфты.

U , кВ	Сечение жилы, мм²	Маркоразмер муфты	Примечание							
Подольский завод электромонтажных изделий										
10	70÷120 150÷240	ПСтО 10-70/120 ПСтО 10-150/240	ТУ 3599-009-04001953-2000 Муфты на основе ТУТ с соеди- нительными гильзами со срыв- ными головками							
	Raychem (на основе ТУТ с болтовыми оконцевателями)									
10	25÷70 70÷150 120÷240 300÷400 10 500÷630 800 25÷70 70÷150 120÷240		AW для кабелей с алюминиевой проволочной броней или ленточным экраном							
	Raychem (на основе	е ТУТ без болтовых окон	цевателей)							
10	50÷70 95÷150 185÷300 400÷630	SXSU 4111 SXSU 4121 SXSU 4131 SXSU 4141								
10	35÷95 120÷185 240÷400	REPJ-12A/1XU REPJ-12B/1XU REPJ-12C/1XU	Большая длина ремонтной муфты позволяет удалить повреждённую часть кабеля и заменить её вставкой участка жилы с двумя соединителями							
*включает соединитель под опрессовку алюминиевых жил										

7.3.2. Концевые муфты для кабелей с изоляцией из СПЭ

Концевые муфты для кабелей с изоляцией из сшитого полиэтилена на основе термоусаживаемых изделий представлены широким модельным рядом.

Фирма Cellpack, наряду с термоусаживаемой муфтой, представляет в своем каталоге концевые муфты так называемого холодного монтажа с эластомерным изолятором. При монтаже данной муфты исключена операция нагрева. Наконечник эластомерной муфты должен быть под опрессовку герметичного исполнения. Пример выбора концевых муфт для кабелей 10 кВ в таблице 21.

Таблица 21. Концевые муфты, пример выбора для кабелей 10 кВ.

II vD	Сечение	Маркоразі	мер муфты	Примононию					
U , кВ	жилы, мм²	наружной установки	внутренней установки	Примечание					
Подольский завод электромонтажных изделий									
10	70÷120 150÷240	ПКНт0-70/120 ПКНт0-150/240	ПКВт0-70/120 ПКВт0-150/240	ТУ 3599-009-04001953-2000					
	Raychem (на основе ТУТ с болтовыми оконцевателями)								
10	25÷70 70÷150 120÷240 185÷400 400÷630	POLT-12C/1XO-L12 POLT-12D/1XIO-L12A POLT-12D/1XO-L12B POLT-12E/1XO-L12 POLT-12F/1XO-L12							
Raychem (на основе ТУТ без болтовых оконцевателей)									
10	25÷95 95÷240 240÷500 500÷800	POLT-12C/1XO POLT-12D/1XIO POLT-12E/1XO-L12B POLT-12F/1XO-L12	POLT-12C/1XI-L12 POLT-12D/1XI-L12A POLT-12E/1XI-L12B POLT-12F/1XI-L12						

ПРИМЕЧАНИЕ Арматура напаянного присоединения заземляющего провода (для кабелей с ленточным алюминиевым или медным экраном) заказывается отдельно.

Инструмент для опрессования гильз и наконечников, гидравлический:

- Ножной гидравлический насос РО 700
- Гидравлическая прессующая головка RH 230 к насосу PO 700 (диапазон применения $AI 10 \div 500 \text{ мм}^2$, $Cu 10 \div 630 \text{ мм}^2$);
- Шестигранные прессующие матрицы для головки RH 230.

Инструмент для удаления электропроводящего полимерного экрана кабеля и монтажа арматуры:

- Инструмент для снятия электропроводящего экрана IT 1000-017-2 (диапазон применения 25÷500 мм²);
- Комплект ножей для разделки кабеля WL20/1, WM20/1;
- Набор газовых горелок «SIEVER MATIC S».

8. РАСЧЁТНЫЕ КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ КАБЕЛЕЙ

Таблица 22. Расчётный диаметр и масса одножильных кабелей.

Номин.	Наружный диаметр одножильного кабеля, мм				Масса 1 км одножильного кабеля, кг							
(сечение экрана),	6 кВ	10 кВ	20 кВ	35 кВ	6 кВ 10 кВ			20	кВ	35 кВ		
MM ²					AI	Cu	AI	Cu	AI	Cu	AI	Cu
ΑΠΒΠ, ΠΒΠ, ΑΠΒΠΓ, ΠΒΠΓ												
50(16)	24,3	26,1	30,3	36,3	587	885	645	943	801	1099	1069	1367
70(16)	25,9	27,7	31,9	37,9	671	1088	734	1150	899	1316	1181	1597
95(16)	27,7	29,5	33,7	39,7	775	1352	843	1420	1020	1597	1317	1894
120(16)	29	30,8	35	41	859	1594	930	1665	1114	1849	1423	2158
150(25)	30,3	32,1	36,3	42,3	1040	1943	1115	2017	1307	2209	1627	2530
185(25)	32,1	33,9	38,1	44	1170	2297	1248	2376	1452	2579	1787	2915
240(25)	34,7	36,3	40,5	46,9	1367	2872	1443	2948	1661	3167	2047	3552
300(25)	37,1	38,3	42,5	48,9	1590	3482	1650	3543	1881	3774	2286	4179
400(35)	40,2	41	45,6	51,6	1993	4403	2037	4446	2312	4722	2715	5124
500(35)	43,7	44,1	48,8	54,7	2360	5464	2384	5488	2681	5785	3112	6216
630(35)	47,7	48,1	52,3	58,7	2826	6875	2853	6902	3144	7193	3643	7692
800(35)	51,6	52	56,6	62,6	3356	-	3385	_	3736	_	4236	_
				ΑПвП	Іу, ПвПу	, АПвПу	∕г, ПвПу	Γ				
50(16)	25,3	27,1	31,3	37,3	625	923	686	984	848	1146	1125	1423
70(16)	26,9	28,7	32,9	38,9	712	1128	777	1194	949	1365	1239	1656
95(16)	28,7	30,5	34,7	40,7	819	1396	889	1466	1072	1649	1379	1956
120(16)	30	31,8	36	42	904	1639	978	1713	1169	1904	1487	2222
150(25)	31,3	33,1	37,3	43,3	1088	1990	1165	2067	1364	2266	1693	2595
185(25)	33,1	34,9	39,1	45,1	1219	2347	1301	2428	1511	2638	1856	2983
240(25)	35,7	37,3	41,5	47,9	1422	2927	1500	3005	1723	3229	2117	3623
300(25)	38,1	39,3	43,5	49,9	1647	3540	1710	3603	1947	3840	2362	4254
400(35)	41,2	42	46,6	52,6	2055	4465	2100	4510	2383	4792	2794	5204
500(35)	44,7	45,1	49,7	55,7	2428	5532	2453	5556	2757	5860	3197	6301
630(35)	48,7	49,1	53,3	59,7	2900	6949	2928	6976	3225	7274	3733	7782
800(35)	52,6	53	57,6	63,6	3436	-	3465	-	3823	_	4333	_
					АПвΠ2	2г, ПвП2	2г					
50(16)	24,4	26,2	30,4	36,4	602	900	663	961	825	1123	1101	1399
70(16)	26	27,8	32	38	689	1105	754	1171	925	1342	1215	1631
95(16)	27,8	29,6	33,8	39,8	797	1374	867	1444	1050	1627	1356	1933
120(16)	29,1	30,9	35,1	41,1	882	1617	956	1691	1147	1882	1464	2199
150(25)	30,4	32,2	36,4	42,4	1077	1979	1154	2056	1353	2254	1682	2584
185(25)	32,2	34	38,2	44,2	1208	2336	1290	2417	1499	2627	1844	2971
240(25)	34,8	36,4	40,6	47	1411	2917	1490	2995	1714	3220	2108	3614

Номин.	Наружный диаметр одножильного кабеля, мм				Масса 1 км одножильного кабеля, кг							
(сечение экрана),	6 кВ	10 кВ	20 кВ	35 кВ	6 кВ 10 кВ		20 кВ		35 кВ			
MM ²					AI	Cu	AI	Cu	AI	Cu	AI	Cu
300(25)	37,2	38,4	42,6	49	1637	3530	1700	3593	1937	3830	2350	4243
400(35)	40,3	41,1	45,7	51,7	2045	4455	2090	4500	2372	4781	2782	5192
500(35)	43,8	44,2	48,8	54,8	2418	5521	2442	5546	2745	5849	3184	6287
630(35)	47,8	48,2	52,4	58,8	2889	6938	2916	6965	3213	7262	3719	7768
800(35)	51,7	52,1	56,7	62,7	3424	_	3453	_	3809	_	4317	_
					АПвПу	2г, ПвПу	/2г					
50(16)	25,4	27,2	31,4	37,4	640	938	704	1002	872	1170	1157	1455
70(16)	27	28,8	33	39	729	1146	797	1214	975	1392	1274	1690
95(16)	28,8	30,6	34,8	40,8	840	1418	913	1491	1103	1680	1418	1995
120(16)	30,1	31,9	36,1	42,1	928	1663	1004	1739	1201	1936	1528	2263
150(25)	31,4	33,2	37,4	43,4	1124	2026	1204	2106	1409	2311	1747	2650
185(25)	33,2	35	39,2	45,2	1258	2386	1343	2470	1559	2686	1912	3039
240(25)	35,8	37,4	41,6	48	1465	2971	1546	3052	1777	3283	2181	3687
300(25)	38,2	39,4	43,6	50	1695	3588	1760	3653	2003	3896	2426	4319
400(35)	41,3	42,1	46,7	52,7	2098	4508	2144	4554	2433	4843	2852	5262
500(35)	44,8	45,2	49,8	55,8	2476	5580	2501	5605	2811	5915	3259	6363
630(35)	48,8	49,2	53,4	59,8	2953	7002	2981	7030	3284	7333	3800	7849
800(35)	52,7	53,1	57,7	63,7	3494	_	3524	_	3887	_	4404	_
		,		АПвВ	, ПвВ, А	ЛвВ-ХЛ	, ПвВ-Х	Л				
50(16)	24,3	26,1	30,3	36,3	666	964	731	1029	901	1200	1191	1489
70(16)	25,9	27,7	31,9	37,9	756	1173	825	1242	1005	1422	1309	1725
95(16)	27,7	29,5	33,7	39,7	867	1444	941	1518	1133	1710	1452	2029
120(16)	29	30,8	35	41	955	1690	1033	1767	1232	1967	1563	2298
150(25)	30,3	32,1	36,3	42,3	1141	2043	1223	2125	1430	2332	1772	2674
185(25)	32,1	33,9	38,1	44	1277	2404	1362	2489	1580	2708	1938	3065
240(25)	34,7	36,3	40,5	46,9	1484	2989	1565	3071	1799	3304	2220	3726
300(25)	37,1	38,3	42,5	48,9	1715	3608	1780	3673	2026	3919	2467	4360
400(35)	40,2	41	45,6	51,6	2129	4539	2176	4586	2480	4890	2906	5316
500(35)	43,7	44,1	48,8	54,7	2510	5613	2535	5639	2862	5966	3316	6420
630(35)	47,7	48,1	52,3	58,7	3003	7051	3031	7080	3339	7388	3818	7927
800(35)	51,6	52	56,6	62,6	3548	_	3578	_	3962	_	4488	_
				АПв	Внг(А)-L	.S, ПвВн	нг(A)-LS					
50(16)	28,1	32,1	38,5	44,5	1008	1306	1291	1589	1781	2079	2233	2531
70(16)	29,6	33,6	40	46,5	1120	1537	1417	1834	1927	2344	2444	2861
95(16)	31,5	35,5	41,9	48,3	1259	1837	1573	2151	2106	2684	2643	3220
120(16)	32,8	36,8	43,2	49,6	1366	2101	1692	2426	2241	2976	2789	3524
150(25)	34,1	38,1	44,5	50,9	1583	2485	1920	2822	2485	3387	3047	3949

Номин. сеч. жилы		аружны жильног		•		Ma	сса 1 км	и однож	ильного	кабеля	і, кг	
(сечение экрана),	6 кВ	10 кВ	20 кВ	35 кВ	6	кВ	10	кВ	20	кВ	35	кВ
MM ²					AI	Cu	AI	Cu	AI	Cu	AI	Cu
185(25)	35,8	39,8	46,7	52,7	1743	2870	2096	3223	2735	3863	3262	4389
240(25)	38,4	42,2	49,1	55,1	1990	3495	2351	3856	3024	4529	3571	5077
300(25)	40,8	44,3	51,1	57,5	2256	4149	2608	4500	3308	5201	3939	5831
400(35)	43,9	47,3	53,8	60,2	2705	5115	3103	5513	3786	6196	4443	6853
500(35)	47,9	50,5	57,3	62,3	3191	6295	3532	6635	4319	7422	4943	8046
630(35)	51,4	54	609	67,3	3696	7745	4060	8109	4896	8945	5627	9676
800(35)	55,3	58,3	64,8	71,2	4298	_	4755	_	5578	_	6348	_
		1		АПв	Внг(В)-L	.S, ПвВн	нг(B)-LS		'		'	
50(16)	23,1	24,9	29,1	35	679	977	747	1045	926	1224	1226	1524
70(16)	24,6	26,4	30,6	36,6	772	1188	844	1261	1032	1449	1346	1763
95(16)	26,5	28,3	32,5	38,5	887	1464	965	1542	1165	1742	1495	2072
120(16)	27,8	29,6	33,8	39,8	978	1713	1059	1794	1267	2001	1608	2343
150(25)	29,1	30,9	35,1	41,1	1178	2080	1262	2164	1478	2380	1831	2733
185(25)	30,8	32,6	36,8	42,8	1316	2443	1405	2533	1632	2759	2000	3127
240(25)	33,4	35	39,2	45,6	1530	3035	1615	3120	1856	3362	2296	3802
300(25)	35,9	37,1	41,2	47,7	1766	3658	1833	3726	2087	3980	2548	4440
400(35)	38,9	39,7	43,9	50,3	2176	4586	2225	4634	2495	4905	2982	5392
500(35)	42,5	42,9	47,5	53,5	2563	5667	2589	5693	2932	6036	3398	650°
630(35)	46,4	46,8	51	57,6	3071	7120	3100	7148	3416	7465	4008	8057
800(35)	50,3	50,7	55,5	61,5	3624	_	3655	_	4087	_	4628	_
			АПвВнг	(A)-XЛ, I	ПвВнг(А	·)-ХЛ, АГ	ПвВнг(А	.), ПвВн	г(А)			
50(16)	27,1	26,9	33,1	39,1	892	1190	975	1273	1188	1486	1538	1836
70(16)	28,6	30,4	34,6	40,6	997	1414	1085	1502	1308	1724	1671	2087
95(16)	30,5	32,3	36,5	42,5	1129	1706	1221	1798	1455	2032	1835	2412
120(16)	31,8	33,6	37,8	43,8	1230	1965	1326	2061	1568	2303	1959	2693
150(25)	33,1	34,9	39,1	45,5	1440	2342	1540	2442	1790	2692	2239	314
185(25)	34,8	36,6	40,8	47,2	1593	2720	1697	2824	1958	3085	2424	355
240(25)	37,4	39	43,2	49,6	1828	3334	1926	3432	2202	3708	2692	4197
300(25)	39,9	41	45,7	51,7	2084	3977	2162	4054	2496	4389	2959	4852
400(35)	42,9	43,7	48,3	54,3	2520	4930	2575	4955	2930	5339	3415	5825
500(35)	46,9	47,3	51,5	58,1	2954	6088	3014	6118	3342	6446	3946	7049
630(35)	50,4	50,8	55	61,6	3473	7522	3174	7554	3280	7904	3526	8544
800(35)	54,3	54,7	59,5	65,5	4057	_	4092	_	4557	_	5146	_
			АПвВнг	(В)-ХЛ, І	ПвВнг(Е	3)-ХЛ, АГ	ТвВнг(E	3), ПвВн	г(В)			
50(16)	23,1	24,9	29,1	35,1	658	956	725	1023	899	1197	1193	1491
70(16)	24,6	26,4	30,6	36,6	749	1166	820	1237	1004	1421	1312	1729
95(16)	26,5	28,3	32,5	38,5	863	1440	939	1516	1135	1712	1459	2036

Номин.		аружныі кильног										
(сечение экрана),	6 кВ	10 кВ	20 кВ	35 кВ	6	кВ	10	кВ	20	кВ	35	кВ
MM ²					AI	Cu	AI	Cu	AI	Cu	AI	Cu
120(16)	27,8	29,6	33,8	39,8	953	1688	1032	1767	1235	1970	1571	2306
150(25)	29,1	30,9	35,1	41,1	1151	2053	1234	2136	1445	2347	1793	2695
185(25)	30,8	32,6	36,8	42,8	1288	2415	1375	2502	1597	2725	1960	3087
240(25)	33,4	35	39,2	45,6	1499	3004	1582	3088	1820	3325	2250	3755
300(25)	35,9	37,1	41,3	47,7	1732	3625	1799	3692	2049	3941	2499	4392
400(35)	38,9	39,7	43,9	50,3	2140	4550	2187	4597	2454	4863	2930	5340
500(35)	42,5	42,9	47,5	53,5	2523	5627	2549	5653	2883	5987	3343	6446
630(35)	46,4	46,8	51	57,6	3023	7072	3052	7101	3364	7412	3942	7991
800(35)	50,3	50,7	55,5	61,5	3572	_	3603	_	4023	_	4557	_
			F	AПвКаП	, ПвКаП	, АПвКа	аПг, Пвк	⟨аΠг				
50(16)	31	32,8	37	43	1067	1365	1153	1451	1386	1684	1769	2067
70(16)	33,3	34,4	39,3	45,7	1250	1667	1348	1765	1600	2016	2046	2463
95(16)	35,2	36,2	41,2	47,6	1390	1967	1506	2083	1769	2347	2220	2797
120(16)	37,4	37,5	43,4	49,8	1606	2341	1723	2458	2002	2737	2483	3218
150(25)	38,7	40,5	44,7	51,1	1812	2715	1933	2835	2220	3122	2732	3634
185(25)	40,4	42,2	46,8	52,8	1987	3115	2112	3239	2440	3567	2920	4047
240(25)	43	43,7	49,2	55,2	2248	3754	2369	3874	2713	4219	3213	4719
300(25)	46,3	47	51,7	58,1	2626	4519	2715	4608	3054	4947	3629	5522
400(35)	50	49,7	55	61,4	3197	5607	3271	5681	3647	6057	4250	6660
500(35)	53,6	53,3	58,6	64,6	3662	6766	3715	6819	4122	7226	4744	7848
630(35)	58,5	57,4	63,1	70,3	4441	8490	4469	8518	4887	8936	5692	9741
800(35)	62,4	61,8	68,2	74,2	5096	_	5126	_	5701	_	6415	_
				A	ЛвКаΠί	2г, ПвКа	аП2г		•			
50(16)	31,3	33,1	37,3	43,3	1122	1420	1217	1515	1475	1773	1868	2166
70(16)	32,8	34,6	38,8	45,6	1241	1658	1340	1757	1594	2011	2075	2491
95(16)	34,7	36,5	40,7	47,5	1383	1960	1501	2078	1767	2344	2252	2829
120(16)	36,9	38,7	42,9	49,7	1600	2335	1718	2453	1999	2734	2518	3253
150(25)	38,2	40	44,2	51	1818	2720	1939	2841	2248	3150	2780	3682
185(25)	39,9	41,7	46,7	52,7	1993	3121	2120	3247	2482	3609	2988	4116
240(25)	43	45,4	49,6	56,2	2328	3834	2494	4000	2827	4332	3409	4915
300(25)	46,2	47,4	51,6	58,2	2668	4560	2758	4651	3104	4996	3706	5599
400(35)	49,9	50,7	54,9	61,5	3233	5643	3309	5719	3690	6100	4321	6731
500(35)	53,5	53,9	58,7	64,7	3730	6834	3757	6861	4216	7319	4820	7924
630(35)	58,6	59	63,2	70	4506	8555	4535	8584	4960	9009	5729	9778
800(35)	62,5	62,9	67,9	73,9	5168	_	5199	_	5738	_	6456	_
					АПвКа	в, ПвКа	аВ					
50(16)	31	32,8	37	43	1293	1591	1399	1698	1673	1971	2121	2419

Номин.		аружныі кильног										
(сечение экрана),	6 кВ	10 кВ	20 кВ	35 кВ	6 ו	кВ	10	кВ	20	кВ	35	кВ
MM ²					AI	Cu	AI	Cu	AI	Cu	AI	Cu
70(16)	33,3	34,4	39,3	45,7	1422	1838	1533	1950	1816	2233	2323	2740
95(16)	35,2	36,2	41,2	47,6	1576	2153	1692	2269	2000	2577	2513	3090
120(16)	37,4	37,5	43,4	49,8	1805	2539	1935	2670	2246	2981	2791	3525
150(25)	38,7	40,5	44,7	51,1	2031	2933	2165	3067	2484	3386	3061	3963
185(25)	40,4	42,2	46,8	52,8	2218	3345	2356	3484	2733	3860	3562	4389
240(25)	43	43,7	49,2	55,2	25499	4054	2733	4239	3095	4600	3719	5225
300(25)	46,3	47	51,7	58,1	2911	4804	3010	4902	3384	5277	4029	5921
400(35)	50	49,7	55	61,4	3498	5908	3580	5989	3990	6400	4664	7074
500(35)	53,6	53,3	58,6	64,6	3990	7094	4046	7150	4508	7612	5183	8287
630(35)	58,5	57,4	63,1	70,3	4819	8868	4851	8899	5306	9354	6235	10284
800(35)	62,4	61,8	68,2	74,2	5502	_	5537	_	6218	_	6992	_
			Α	ЛвЭаП,	ПвЭаП	, АПвЭа	аПг, Пв	ЭаПг			•	
50(30)	24,3	26,1	30,3	36,3	509	807	568	866	723	1021	989	1287
70(30)	25,9	27,7	31,9	37,9	594	1010	656	1073	820	1237	1100	1505
95(30)	27,7	29,5	33,7	39,7	699	1276	766	1343	942	1519	1238	1803
120(30)	29	30,8	35	41	782	1517	853	1588	1037	1772	1344	2067
150(45)	30,3	32,1	36,3	42,3	928	1830	1003	1905	1194	2097	1514	2403
185(45)	32,1	33,9	38,1	44	1057	2184	1136	2263	1338	2466	1673	2787
240(45)	34,7	36,3	40,5	46,9	1256	2761	1332	2837	1549	3055	1962	3453
300(45)	37,1	38,3	42,5	48,9	1478	3371	1539	3432	1769	3662	2202	4094
400(60)	40,2	41	45,6	51,6	1825	4235	1869	4289	2115	4525	2575	4985
500(60)	43,7	44,1	48,8	54,7	2192	5296	2216	5320	2541	5645	2973	6077
630(60)	47,7	48,1	52,3	58,7	2686	6735	2712	6761	3005	7054	3469	7418
800(60)	51,6	52	56,6	62,6	3217	-	3246	_	3563	_	4061	_
			АΠ	вЭаПу,	ПвЭаПу	, АПвЭа	аПуг, Пе	зЭаПуг				
50(30)	25,3	27,1	31,3	37,3	547	845	608	906	769	1067	1044	1342
70(30)	26,9	28,7	32,9	38,9	633	1050	698	1115	869	1286	1158	1575
95(30)	28,7	30,5	34,7	40,7	741	1318	811	1388	994	1571	1299	1876
120(30)	30	31,8	36	42	826	1561	900	1635	1090	1825	1407	2142
150(45)	31,3	33,1	37,3	43,3	975	1877	1052	1954	1250	2152	1578	2480
185(45)	33,1	34,9	39,1	45,1	1106	2233	1188	2315	1397	2524	1740	2868
240(45)	35,7	37,3	41,5	47,9	1309	2814	1387	2893	1611	3117	2005	3510
300(45)	38,1	39,3	43,5	49,9	1535	3427	1598	3490	1834	3727	2247	4139
400(60)	41,2	42	46,6	52,6	1886	4296	1932	4342	2185	4594	2623	5032
500(60)	44,7	45,1	49,7	55,7	2259	5363	2283	5387	2586	5690	3024	6128
630(60)	48,7	49,1	53,3	59,7	2730	6779	2757	6806	3053	7102	3559	7608
800(60)	52,6	53	57,6	63,6	3264	_	3294	_	3649	_	4156	_

Номин.	Наружный диаметр Масса 1 км одножильного кабеля, кг одножильного кабеля, мм								1, КГ			
(сечение экрана),	6 κB	10 кВ	20 кВ	35 кВ	6	кВ	10	кВ	20	кВ	35	кВ
MM ²					AI	Cu	AI	Cu	AI	Cu	AI	Cu
				Α	ЛвЭаΠ	2г, ПвЭа	аП2г					
50(30)	24,4	26,2	30,4	36,4	536	834	596	895	756	1054	1029	1327
70(30)	26	27,8	32	38	621	1037	686	1103	855	1272	1142	1559
95(30)	27,8	29,6	33,8	39,8	729	1306	799	1376	979	1556	1282	1859
120(30)	29,1	30,9	35,1	41,1	814	1549	887	1622	1075	1810	1390	2124
150(45)	30,4	32,2	36,4	42,4	962	1864	1038	1940	1235	2137	1560	2463
185(45)	32,2	34	38,2	44,2	1092	2220	1173	2301	1281	2508	1722	2849
240(45)	34,8	36,4	40,6	47	1294	2800	1372	2877	1594	3100	2014	3519
300(45)	37,2	38,4	42,6	49	1519	3412	1581	3474	1816	3709	2256	4149
400(60)	40,3	41,1	45,7	51,7	1869	4279	1914	4324	2221	4631	2633	5042
500(60)	43,8	44,2	48,8	54,8	2240	5344	2265	5369	2595	5700	3034	6138
630(60)	47,8	48,2	52,4	58,8	2739	6788	2766	6815	3064	7113	3534	7583
800(60)	51,7	52,1	56,7	62,7	3274	_	3004	_	3625	_	4130	_
			ı	АГ	 1вЭаПу;	 2г, ПвЭа	 аПу2г	I				
50(30)	25,4	27,2	31,4	37,4	574	872	637	935	803	1101	1085	1383
70(30)	27	28,8	33	39	662	1079	730	1146	905	1322	1201	1617
95(30)	28,8	30,6	34,8	40,8	773	1350	845	1422	1032	1609	1344	1921
120(30)	30,1	31,9	36,1	42,1	859	1594	935	1670	1130	1865	1453	2188
150(45)	31,4	33,2	37,4	43,4	1009	1911	1088	1990	1291	2193	1626	2528
185(45)	33,2	35	39,2	45,2	1142	2270	1226	2353	1440	2567	1790	2917
240(45)	35,8	37,4	41,6	48	1348	2853	1428	2934	1657	3162	2058	3563
300(45)	38,2	39,4	43,6	50	1577	3469	1641	3534	1882	3775	2302	4195
400(60)	41,3	42,1	46,7	52,7	1932	4342	1978	4388	2264	4674	2681	5090
500(60)	44,8	45,2	49,8	55,8	2308	5412	2333	5437	2641	5745	3085	6189
630(60)	48,8	49,2	53,4	59,8	2783	6832	2811	6860	3112	7161	3625	7674
800(60)	52,7	53,1	57,7	63,7	3323	_	3352	_	3713	_	4227	_
			I		АПвЭа	в, ПвЭа	aB	I				
50(30)	24,3	26,1	30,3	36,3	587	885	651	949	821	1119	1109	1407
70(30)	25,9	27,7	31,9	37,9	669	1086	738	1154	916	1332	1215	1632
95(30)	27,7	29,5	33,7	39,7	780	1358	854	1431	1043	1620	1359	1936
120(30)	29	30,8	35	41	868	1603	945	1680	1142	1877	1469	2204
150(45)	30,3	32,1	36,3	42,3	1019	1921	1099	2001	1304	2206	1643	2545
185(45)	32,1	33,9	38,1	44	1153	2280	1238	2365	1454	2581	1808	2935
240(45)	34,7	36,3	40,5	46,9	1360	2866	1441	2947	1673	3178	2090	3596
300(45)	37,1	38,3	42,5	48,9	1590	3483	1655	3548	1899	3792	2336	4429
400(60)	40,2	41	45,6	51,6	1947	4357	1994	4404	2254	4664	2717	5127
500(60)	43,7	44,1	48,8	54,7	2326	5430	2351	5455	2675	5779	3125	6229

Номин.		аружныі кильног		•		Mad	сса 1 км	1 однож	ильного	кабеля	1, КГ	
(сечение экрана),	6 кВ	10 кВ	20 kB	35 кВ	6	кВ	10	кВ	20	кВ	35	кВ
MM ²					AI	Cu	AI	Cu	AI	Cu	AI	Cu
630(60)	47,7	48,1	52,3	58,7	2817	6865	2844	6839	3150	7199	3684	7733
800(60)	51,6	52	56,6	62,6	3359	_	3389	_	3770	_	4291	_
				АПвЭal	Знг(А)-L	.S, ПвЭа	аВнг(А)-	LS				
50(30)	28,1	32,1	38,5	44,5	1028	1326	1124	1422	1591	1889	2021	2319
70(30)	29,6	33,6	40	46,5	1144	1561	1245	1661	1731	2148	2174	2591
95(30)	31,5	35,5	41,9	48,3	1289	1866	1394	1971	1904	2481	2416	2994
120(30)	32,8	36,8	43,2	49,6	1399	2134	1507	2242	2033	2768	2559	3294
150(45)	34,1	38,1	44,5	50,9	1573	2475	1685	2587	2227	3129	2766	3668
185(45)	35,8	39,8	46,7	52,7	1738	2865	1854	2982	2418	3546	2974	4101
240(45)	38,4	42,2	49,1	55,1	1991	3497	2101	3606	2749	4254	3275	4780
300(45)	40,8	44,3	51,1	57,5	2264	4157	2350	4243	3026	4918	3569	5462
400(60)	43,9	47,3	53,8	60,2	2675	5085	2736	5146	3448	5858	4082	6492
500(60)	47,9	50,5	57,3	62,3	3172	6276	3205	6309	3904	7008	4570	7673
630(60)	51,4	54	609	67,3	3686	7735	3721	7770	4532	8581	5165	9214
800(60)	55,3	58,3	64,8	71,2	4363	4363	4400	4400	5199	5199	5946	5946

Таблица 23. Расчётный диаметр и масса **трёх**жильных кабелей.

Номин.	сеч. жилы трёхжильного кабеля, мм (сечение					Ma	сса 1 км	и трёхжі	ильного	кабеля	, КГ	
экрана),	6 кВ	10 кВ	20 кВ	35 кВ	6	кВ	10	кВ	20	кВ	35	кВ
MM ²					AI	Cu	AI	Cu	AI	Cu	AI	Cu
				АΠε	зП, ПвП	, АПвПг	, ПвПг					
50(16)	43	47	57	71	2058	2965	2415	3323	3341	4249	5041	5549
70(16)	47	51	60	75	2471	3740	2829	4098	3818	5087	5612	6881
95(16)	51	55	64	79	2966	4723	3355	5112	4421	6178	6328	8086
120(16)	54	58	68	81	3349	5586	3795	6033	5003	7240	6863	9101
150(25)	57	61	71	84	3939	6686	4375	7122	5641	8387	7576	10322
185(25)	61	64	75	88	4532	7965	4997	8430	6338	9771	8372	11804
240(25)	68	71	80	93	5594	10178	6051	10636	7368	11952	9538	14123
300(25)	73	75	85	97	6629	12392	6997	12761	8394	14158	10679	16442
400(35)	80	81	90	103	8128	_	8395	_	9898	_	12334	_
				ΑПвП	у, ПвПу	, АПвПу	∕г, ПвПу	′ Γ				
50(16)	44	49	58	71	2125	3032	2489	3397	3430	4337	5063	5971
70(16)	48	52	61	75	2544	3813	2908	4177	3912	5181	5635	6904
95(16)	52	56	65	79	3045	4802	3440	5197	4520	6278	6352	8110
120(16)	55	59	69	82	3432	5670	3885	6123	5024	7262	6888	9126

Номин.		аружныі кильног		•		Ма	сса 1 км	и трёхжі	ильного	кабеля	Ι, ΚΓ	
(сечение экрана),	6 кВ	10 кВ	20 кВ	35 кВ	6	кВ	10	кВ	20	кВ	35	кВ
MM ²					AI	Cu	AI	Cu	AI	Cu	AI	Cu
150(25)	58	62	71	84	4028	6775	4469	7216	5662	8409	7601	10348
185(25)	62	66	75	88	4626	8059	5097	8530	6361	9794	8398	11831
240(25)	68	71	80	93	5614	10199	6073	10657	7393	11977	9567	14151
300(25)	73	76	85	98	6651	12414	7020	12784	8420	14183	10708	16472
400(35)	80	81	90	103	8152	_	8420	_	9926	_	12366	_
				АПвВ	, ПвВ, А	ЛвВ-ХЛ	, ПвВ-Х	Л				
50(16)	43	47	57	71	2206	3113	2592	3499	3570	4478	5388	6296
70(16)	47	51	60	75	2646	3915	3018	4287	4061	5330	5976	7245
95(16)	51	55	64	79	3156	4913	3560	5317	4681	6438	6713	8470
120(16)	54	58	68	81	3549	5787	4028	6266	5336	7573	7262	9500
150(25)	57	61	71	84	4169	6915	4620	7367	5988	8735	7989	10736
185(25)	61	64	75	88	4777	8210	5259	8691	6705	10138	8804	12237
240(25)	68	71	80	93	5923	10507	6398	10982	7761	12345	9998	14582
300(25)	73	75	85	97	6985	12748	7366	13130	8809	14573	11160	16924
400(35)	80	81	90	103	8518	_	8794	_	10346	_	12845	_
,			•	АПвІ	Внг(A)-L	.S, ПвВн	нг(A)-LS		1		•	
50(16)	43	48	57	71	2331	3239	2744	3651	3781	4689	5603	6510
70(16)	47	51	60	74	2803	4072	3196	4465	4300	5569	6219	7487
95(16)	51	55	64	78	3334	5091	3760	5517	4946	6703	6980	8738
120(16)	54	58	68	81	3743	5981	4254	6491	5542	7779	7547	9785
150(25)	57	61	71	84	4390	7137	4866	7613	6213	8960	8296	11043
185(25)	61	65	74	87	5022	8454	5528	8961	6952	10385	9137	12570
240(25)	67	71	80	93	6127	10711	6622	10711	8041	12626	10369	14953
300(25)	72	75	84	97	7221	12985	7619	13382	9121	14884	11567	17330
400(35)	79	81	90	103	8795	_	9083	_	10695	_	13298	_
				АПвІ	Внг(В)-L	.S, ПвВн	нг(В)-LS					
50(16)	43	47	57	70	2276	3183	2682	3589	3735	4642	5506	6413
70(16)	47	51	60	74	2742	4010	3129	4398	4252	5521	6117	7386
95(16)	51	55	64	78	3267	5025	3688	5445	4894	6651	6873	8631
120(16)	54	58	67	80	3673	5910	4207	6444	5449	7687	7436	9674
150(25)	57	61	70	83	4343	7090	4816	7563	6115	8862	8180	10927
185(25)	61	65	74	87	4972	8404	5475	8907	6850	10282	9016	12448
240(25)	67	70	79	92	6035	10619	6525	11110	7932	12516	10240	14824
300(25)	74	75	84	96	7383	13146	7516	13279	9005	14768	11432	17195
400(35)	79	80	89	102	8828	_	8972	_	10571	_	13155	_
			АПвВнг	(A)-XЛ, I	ПвВнг(А	\)-ХЛ, АГ	ПвВнг(А	.), ПвВні	г(А)			
50(16)	43	48	57	71	2288	3195	2690	3597	3736	4644	5499	6407

Номин.	еч. жилы трёхжильного кабеля, мм						сса 1 км	и трёхжі	ильного	кабеля	І, КГ	
(сечение экрана),	6 кВ	10 кВ	20 кВ	35 кВ	6	кВ	10	кВ	20	кВ	35	кВ
MM ²					AI	Cu	AI	Cu	AI	Cu	AI	Cu
70(16)	47	51	61	74	2742	4011	3129	4398	4244	5513	6102	7371
95(16)	51	55	65	78	3267	5025	3688	5445	4886	6643	6857	8614
120(16)	54	58	68	81	3673	5910	4200	6438	5435	7673	7419	9657
150(25)	57	61	71	84	4337	7083	4808	7555	6101	8848	8162	10909
185(25)	61	65	74	87	4964	8397	5467	8899	6834	10267	8997	12429
240(25)	67	71	80	93	6022	10606	6511	11095	7915	12499	10220	14804
300(25)	72	75	84	97	7107	12870	7500	13263	8987	14750	11411	17174
400(35)	79	81	90	103	8670	_	8954	_	10551	_	13132	_
			АПвВнг	(В)-ХЛ, I	ПвВнг(Е	3)-ХЛ, АГ	7вВнг(E	3), ПвВн	г(B)			
50(16)	43	47	57	70	2246	3153	2644	3551	3681	4589	5431	6339
70(16)	47	51	60	74	2696	3965	3080	4349	4186	5455	6030	7299
95(16)	51	55	64	78	3218	4976	3635	5392	4823	6581	6782	8539
120(16)	54	58	67	80	3621	5858	4144	6381	5370	7608	7341	9579
150(25)	57	61	70	83	4281	7028	4749	7496	6033	8780	8081	10828
185(25)	61	65	74	87	4906	8338	5404	8837	6762	10195	8913	12345
240(25)	67	70	79	92	5957	10541	6443	11027	7838	12422	10130	14715
300(25)	72	75	84	96	7037	12801	7428	13191	8906	14669	11317	17080
400(35)	79	80	89	102	8594	_	8877	_	10465	_	13033	_
				АПвБІ	7, ПвБГ	І, АПвБГ	1г, ПвБГ	7г				
50(16)	47	51	61	75	2661	3568	3043	3951	4094	5001	5980	6888
70(16)	51	55	64	78	3092	4361	3501	4770	4615	5884	6596	7865
95(16)	55	59	69	82	3640	5397	4119	5876	5405	7162	7366	9123
120(16)	58	62	72	85	4097	6335	4592	6799	5904	8142	7938	10176
150(25)	61	65	75	88	4692	7439	5180	7927	6580	9327	8689	11435
185(25)	64	69	79	91	5335	8768	5956	9418	7328	10761	9535	12967
240(25)	71	75	84	97	6485	11070	6990	11574	8428	13012	10772	15356
300(25)	76	79	88	101	7579	13343	7983	13746	9501	15264	11959	17123
400(35)	83	85	94	107	9167	_	9458	_	11082	_	13692	_
			A	\ПвБВ,	ПвБВ, А	ЛвБВ-Х	Л, ПвБЕ	3-ХЛ				
50(16)	47	51	61	75	2918	3825	3323	4231	4447	5324	6485	7392
70(16)	51	55	64	78	3369	4638	3801	5070	4989	6258	7125	8393
95(16)	55	59	69	82	3941	5698	4461	6218	5869	7627	7924	9681
120(16)	58	62	72	85	4432	6670	4921	7159	6389	8626	8515	10753
150(25)	61	65	75	88	5045	7792	5557	8304	7085	9831	9286	12033
185(25)	64	69	79	91	5711	9144	6452	9885	7859	11292	10159	13592
240(25)	71	75	84	97	6964	11548	7493	12077	8997	13581	11433	16018
300(25)	76	79	88	101	8107	13871	8529	14292	10113	15879	12664	18427

Номин.		аружны кильног				Ма	сса 1 кл	и трёхжі	ильного	кабеля	Ι, ΚΓ	
(сечение экрана),	6 кВ	10 кВ	20 кВ	35 кВ	6	кВ	10	кВ	20	кВ	35	кВ
MM ²					AI	Cu	AI	Cu	AI	Cu	AI	Cu
400(35)	83	85	94	107	9743	_	10046	_	11735	_	14438	_
				АПвБ	Внг(А)-L	.S, ПвБЕ	Знг(A)-L	S				
50(16)	47	51	61	74	3103	4010	3531	4438	4722	5630	6766	7674
70(16)	51	55	64	77	3573	4842	4029	5298	5288	6557	7428	8697
95(16)	55	59	69	81	4170	5927	4725	6482	6115	7872	8256	10013
120(16)	58	62	71	84	4689	6926	5204	7442	6652	8889	8868	11106
150(25)	61	65	74	87	5223	8070	5862	8609	7368	10115	9662	12409
185(25)	64	69	78	91	6015	9448	6701	10134	8168	11601	10564	13997
240(25)	71	74	83	96	7225	11809	7776	12360	9343	13927	11881	16465
300(25)	76	78	87	100	8404	14167	8844	14607	10493	16257	13150	18913
400(35)	82	84	93	106	10086	_	10402	_	12161	_	14975	_
				АПвБ	Внг(В)-L	.S, ПвБЕ	Знг(B)-L	S				
50(16)	47	51	60	74	3038	3946	3461	4369	4672	5579	6661	7568
70(16)	50	54	64	77	3504	4773	3955	5224	5235	6504	7319	8588
95(16)	54	59	68	81	4095	5853	4676	6433	6018	7775	8140	9898
120(16)	58	62	71	84	4641	6878	5153	7391	6550	8788	8748	10987
150(25)	60	64	74	87	5273	8020	5808	8555	7263	10010	9539	12286
185(25)	64	68	78	90	5962	9394	6604	10036	8058	11491	10435	13868
240(25)	70	74	83	96	7125	11709	7671	12255	9225	13810	11744	16329
300(25)	75	78	87	100	8297	14060	8733	14496	10369	16133	13007	18771
400(35)	82	84	93	106	9969	_	10282	_	12029	_	14824	_
		АΠ	вБВнг(А	A)-ХЛ, П	вБВнг(А	·)-ХЛ, АГ	- ПвБВнг((А), ПвБ	Внг(А)			
50(16)	47	51	61	74	3018	3926	3439	4346	4637	5545	6611	7519
70(16)	51	55	64	77	3482	4751	3931	5200	5198	6467	7266	8535
95(16)	55	59	69	81	4071	5828	4642	6400	5972	7730	8085	9842
120(16)	58	62	71	84	4619	6856	5128	7366	6513	8751	8701	10939
150(25)	61	65	74	87	5238	7985	5771	8518	7213	9960	9479	12225
185(25)	64	69	78	91	5924	9357	6558	9991	8005	11438	10372	13805
240(25)	71	74	83	96	7078	11662	7621	12206	9168	13752	11677	16261
300(25)	76	78	87	100	8245	14009	8679	14443	10309	16072	12937	18700
400(35)	82	84	93	106	9913	_	10225	_	11964	_	14749	_
		АП	вБВнг(Е	3)-ХЛ, П	вБВнг(В	3)-ХЛ, АГ	ТвБВнг(В), ПвБ	Внг(В)			
50(16)	47	51	60	74	2970	3877	3387	4294	4575	5483	6535	7443
70(16)	50	54	64	77	3431	4700	3875	5144	5132	6401	7187	8456
95(16)	54	59	68	81	4015	5773	4582	6340	5902	7660	8002	9759
120(16)	58	62	71	84	4560	6797	5065	7303	6441	8678	8615	10853
150(25)	60	64	74	87	5176	7923	5705	8452	7138	9884	9390	12137

Номин. сеч. жилы (сечение		аружныі кильног				Ma	сса 1 км	и трёхжі	ильного	кабеля	, кг	
экрана),	6 кВ	10 кВ	20 кВ	35 кВ	6	кВ	10	кВ	20	кВ	35	кВ
MM ²					AI	Cu	AI	Cu	AI	Cu	AI	Cu
185(25)	64	68	78	90	5859	9291	6488	9920	7926	11358	10279	13712
240(25)	70	74	83	96	7006	11590	7546	12130	9083	13667	11579	16163
300(25)	75	78	87	100	8168	13931	8599	14363	10220	15983	12834	18598
400(35)	82	84	93	106	9829	_	10139	_	11869	_	14641	_
				АПвКГ	1, ПвКП	, АПвКГ	7г, ПвКГ	7г				
50(16)	54	59	68	_	5832	6732	6552	7452	8319	9219	_	_
70(16)	58	62	72	_	6501	7760	7194	8453	9029	10288	_	_
95(16)	62	67	_	_	7332	9075	8146	9889	_	_	_	_
120(16)	65	70	_	_	7906	10126	8739	10959	_	_	_	_
150(25)	68	72	_	_	8889	11614	9557	12282	_	_	_	_
185(25)	72	_	_	_	9711	13117	_	_	_	_	_	_
					АПвК	В, ПвКЕ	3					
50(16)	54	59	68	_	6202	7110	6977	7884	8849	9757	_	_
70(16)	58	62	72	_	6776	8045	7482	8751	9390	10659	_	_
95(16)	62	67	_	_	7620	9378	8490	10247	_	_	_	_
120(16)	65	70	_	_	8238	10476	9135	11372	_	_	_	_
150(25)	68	72	_	_	9266	12013	9954	12701	_	_	_	_
185(25)	72	_	_	_	10311	13717	_	_	_	_	_	_
			А	ЛвЭаП,	ПвЭаП	, АПвЭа	аПг, Пв	ЭаПг				
50(30)	46	50	59	73	2083	2990	2421	3328	3365	4273	5093	6000
70(30)	49	53	62	76	2476	3745	2841	4109	3848	5117	5670	6939
95(30)	53	57	67	80	2978	4735	3409	5167	4582	6339	6394	8151
120(30)	56	60	70	83	3400	3400	3821	3821	5049	5049	6934	6934
150(45)	59	63	73	86	3905	5903	4348	6346	5634	7632	7593	9591
185(45)	63	68	67	90	4505	6965	5101	7561	6339	8799	8396	10856
240(45)	70	73	82	95	5580	8583	6044	9047	7378	10381	9573	12576
					АПвЭа	в, ПвЭа	аВ					
50(30)	46	50	59	73	2251	3159	2604	3512	3602	4509	5449	6357
70(30)	49	53	62	76	2657	3926	3037	4306	4099	5368	6044	7312
95(30)	53	57	67	80	3175	4932	3639	5396	4907	6667	6788	8545
120(30)	56	60	70	83	3625	5863	4062	6300	5391	7629	7342	9580
150(45)	59	63	73	86	4142	6889	4601	7348	5990	8737	8016	10763
185(45)	63	68	67	90	4757	8190	5460	8863	6714	10147	8838	12271
240(45)	70	73	82	95	5919	10503	6401	10985	7781	12365	10041	14626
				АПвЭal	Знг(A)-L	.S, ПвЭа	аВнг(А)-	LS				
50(30)	47	50	59	72	2543	3450	2930	3838	4020	4928	5917	6824
70(30)	49	53	62	76	2978	4247	3393	4662	4550	5819	6543	7812

Номин.		аружныі кильног		•		Ma	сса 1 км	и трёхжі	ильного	кабеля	, кг	
(сечение экрана),	6 кВ	10 кВ	20 кВ	35 кВ	6	кВ	10	кВ	20	кВ	35	кВ
MM ²					AI	Cu	AI	Cu	AI	Cu	AI	Cu
95(30)	53	57	67	80	3532	5289	4041	5798	5325	7083	7328	9085
120(30)	56	60	70	83	4016	6254	4491	6728	5832	8070	7910	10147
150(45)	59	63	72	85	4562	7308	5059	7806	6459	9206	8615	11362
185(45)	63	67	76	89	5214	8647	5850	9282	7220	10652	9477	12909
240(45)	69	72	81	94	6354	10938	6868	11453	8338	12922	10737	15321
			АΠε	ЭаБП, Г	ЛвЭаБП	, АПвЭа	аБПг, Пе	зЭаБПг				
50(30)	49	53	62	77	2820	3727	3223	4130	4323	5230	6281	7189
70(30)	52	57	67	80	3269	4538	3735	5004	4991	6260	6915	8184
95(30)	57	61	71	84	3875	5632	4338	6096	5676	7434	7706	9464
120(30)	60	64	74	87	4311	6548	4796	7034	6190	8428	8293	10531
150(45)	62	68	77	89	4863	7610	5501	8248	6823	9670	9000	11747
185(45)	67	71	80	93	5656	9088	6200	9633	7591	11024	9866	13299
240(45)	73	77	86	98	6754	11338	7279	11863	8771	13355	11192	15776
				,	АПвЭаБ	В, ПвЭа	аБВ					
50(30)	49	53	62	77	3087	3995	3513	4421	4686	5594	6799	7706
70(30)	52	57	67	80	3556	4825	4063	5332	5439	6708	7456	8725
95(30)	57	61	71	84	4204	5961	4692	6449	6154	7911	8277	10034
120(30)	60	64	74	87	4657	6895	5167	7405	6687	8925	8883	11121
150(45)	62	68	77	89	5227	7974	5954	8701	7341	10087	9611	12358
185(45)	67	71	80	93	6107	9540	6680	10112	8135	11568	10504	13936
240(45)	73	77	86	98	7246	11830	7796	12380	9353	13937	11868	16452
			F	АПвЭаБІ	Внг(А)-L	S, ПвЭа	аБВнг(А)-LS				
50(30)	51	54	64	77	3391	4299	3847	4754	5105	6012	7244	8152
70(30)	54	58	68	81	3885	5154	4434	5703	5808	7077	7930	9199
95(30)	58	62	72	85	4576	6333	5096	6853	6554	8312	8786	10543
120(30)	61	65	75	87	5052	7289	5594	7832	7110	9348	9417	11654
150(45)	64	68	77	90	5647	8394	6329	9076	7788	10535	10172	12919
185(45)	67	71	80	93	6153	9585	6737	10169	8223	11656	10646	14079
240(45)	72	76	85	98	7264	11848	7823	12407	9409	13993	11974	16558

9. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие кабелей требованиям технических условий при соблюдении заказчиком (потребителем) условий транспортирования, хранения, монтажа и эксплуатации.

Гарантийный срок эксплуатации – 5 лет.

Гарантийный срок исчисляют с даты ввода кабелей в эксплуатацию, но не позднее 6 месяцев с даты изготовления.

Срок службы кабелей – не менее 30 лет.

ПРИЛОЖЕНИЕ А. Технология ремонта оболочки кабеля

Справочное приложение

1. Ремонт с использованием термоусаживаемой манжеты

1.1. Для ремонта оболочек кабелей рекомендуется использовать термоусаживаемые манжеты фирмы «Райхем» длиной 1500мм различных размеров в зависимости от наружного диаметра ремонтируемого кабеля. Для справки в таблице А-1 приведены основные данные и обозначение манжет для заказа.

Таблица А-1. Основные данные и обозначение манжет.

Наружный диаметр ремонтируемого	Внутренний диам	петр манжеты, мм	Обозначение манжеты для заказа
кабеля, мм	До усадки Д _а (мин.)	После усадки D _b (макс.)	
От 17 до 32	54	15	CRSM 53/13-1500/239
От 24 до 50	86	21	CRSM 84/20-1500/239
От 31 до 65	108	27	CRSM 107/29-1500/239
От 33 до 86	144	28	CRSM 143/36-1500/239

Манжета выбирается по размерам такой, чтобы после усадки на кабель её внутренний диаметр был в пределах от $(\mathbf{D}_b + 15\% \mathbf{D}_b)$ до $(\mathbf{D}_a - 20\% \mathbf{D}_a)$;

где \boldsymbol{D}_{b} – внутренний диаметр манжеты после свободной усадки,

 D_{a} – внутренний диаметр манжеты до усадки.

Допускается использовать равноценные по качеству термоусаживаемые манжеты других производителей.

- 1.2. Определить границы места ремонта оболочки кабеля (минимум по 100 мм в обе стороны от краёв дефекта).
- 1.3. При наличии рёбер на оболочке кабеля в месте ремонта снять рёбра по всей ок-ружности.
- 1.4. Зачистить наждачной бумагой поверхность оболочки и обезжирить ацетоном.
- 1.5. Отрезать от манжеты и замка участок равный по длине месту ремонта.
- 1.6. Снять с отрезанного участка манжеты защитную пленку и обернуть манжету вокруг кабеля так, чтобы адгезивный подслой примыкал к оболочке кабеля. Надвинуть на приливы манжеты замок.
- 1.7. Лёгким пламенем газовой горелки усадить манжету на кабель, начиная прогрев с середины стороны противоположной замку.
- 1.8. После полной усадки манжеты дополнительно прогреть зону вблизи замка. При правильной усадке из под концов манжеты на оболочку кабеля должен выдавиться в виде ровных валиков клеевой состав.
- 1.9. Дать остыть манжете до температуры ниже плюс 35°C. Не допускать до остывания механических воздействий на манжету.

2. Ремонт с использованием лент ЛЭТСАР ЛП

- 2.1. Определить границы места ремонта оболочки кабеля (минимум по 150 мм в обе стороны от краёв дефекта).
- 2.2. При наличии рёбер на оболочке кабеля в месте ремонта снять рёбра по всей ок-ружности.

- 2.3. Зачистить наждачной бумагой поверхность оболочки и обезжирить ацетоном.
- 2.4. В случае, если в месте ремонта на оболочке имеются сквозные отверстия, трещины или разрывы, у которых ширина или диаметр более 3 мм, заложить туда кусочки ленты ЛЭТСАР ЛП и сжать их до такой степени, чтобы они были на уровне наружной поверхности оболочки или выступали над оболочкой не более чем на 1 мм.
- 2.5. Промазать поверхность ремонтного участка лаком КО-916 и дать лаку подсохнуть.
- 2.6. Наложить на поверхность оболочки, покрытую лаком, четыре слоя ленты ЛЭТСАР ЛП с 50% перекрытием.
- 2.7. Промазать поверхность наложенной ленты и участки оболочки кабеля на длине 50 мм от лент лаком КО-916 и наложить два слоя ПВХ ленты с 50% перекрытием.
- 2.8. Наложить на поверхность ПВХ лент два слоя смоляной ленты с 50% перекрытием, предварительно прогревая её пламенем газовой горелки.
- 2.9. После наложения смоляной ленты дать кабелю остыть в месте ремонта до температуры ниже 35°C. Не допускать до остывания механических воздействий на место ремонта.

3. Ремонт с использованием лент RULLE

- 3.1. Ленты RULLE выполнены из этиленпропиленовой резины с клейким слоем из бутилкаучука, закрытым защитной пленкой, которая снимается при монтаже. Толщина лент – 2 мм, ширина – 60 мм. Длина в рулоне: ленты RULLE 1 – 3,5 м, ленты RULLE 2 – 5,5 м.
- 3.2. Определить границы места ремонта оболочки кабеля (минимум по 100 мм в обе стороны от краёв дефекта).
- 3.3. При наличии рёбер на оболочке кабеля в месте ремонта снять рёбра по всей ок-ружности.
- 3.4. Зачистить наждачной бумагой поверхность оболочки и обезжирить ацетоном.
- 3.5. Наложить с 50% перекрытием два слоя ленты RULLE. Наматывать клеевым слоем к оболочке кабеля, снимая защитную ленту. При намотке ленту следует вытягивать до такой степени, чтобы нарисованные на её поверхности овалы превратились в круги.

ПРИЛОЖЕНИЕ Б. Ремонт кабельных трасс

Справочное приложение

Капитальный ремонт должен проводиться 1 раз в 5 лет согласно следующей последовательности:

- 1. Внешний осмотр конструкций кабельных каналов, кабельных туннелей и элементов кабельных линий.
- 2. Дефектация, уточнение объёма работ.
- Чистка вентиляционных проемов, кабельных туннелей и каналов. 3.
- 4. Восстановление работоспособности люков (дверей) и замков.
- 5. Устранение провисания кабелей. Очистка брони от пыли и коррозии, покрытие брони кабеля и металлических конструкций антикоррозийным лаком или краской.
- 6. Крепление недостающих бирок.
- Проверка состояния кабельных муфт и их креплений, покраска и закрепление муфт. 7.
- Устранение выявленных замечаний по конструкциям, креплению и ограждению кабельных линий.
- Контроль и измерение величины нагрева кабеля с помощью тепловизора. 9.
- 10. Проведение высоковольтных испытаний.
- 11. Устранение дефектов по результатам высоковольтных испытаний.
- 12. Проведение капитального ремонта трасс, должно быть зафиксировано, либо в кабельном журнале, либо составлением Акта, либо любым другим методом, принятым на предприятии.

Текущий ремонт кабеля должен проводиться один раз в два года согласно следующей последовательности:

- 1. Внешний осмотр конструкций кабельных каналов, кабельных туннелей, кабеля.
- 2. Дефектация, уточнение объема работ.
- Технический осмотр, чистка конструкций и элементов кабельных линий. 3.
- 4. Проверка соответствия техническим характеристикам (контроль температурного режима).
- Устранение дефектов, восстановление маркировки, надписей, бирок (крепление недо-5. стающих бирок).
- Устранение провисания кабелей. 6.
- Проведение текущего ремонта кабеля, должно быть зафиксировано либо в кабельном журнале, либо составлением Акта, либо любым другим методом, принятым на предприятии.

ПРИЛОЖЕНИЕ (справочное)

Таблица С-1. Механические характеристики проволок алюминиевых, из алюминиевого сплава и стальных для брони.

Наименование характеристики	Значение характеристики для проволоки					
Паименование характеристики	алюминиевой	алюминиевого сплава	стальной оцинкованной			
1.Временное сопротивление разрыву, H/мм², не менее	165	305	340			
2.Относительное удлинение при разрыве, %, не менее	1,5	3,0	9			
3.Модуль упругости, Н/мм², не менее	63·10³	63·10³	200·10³			
4.Коэффициент линейного расширения, °C-1, не более	23·10 ⁻⁶	23·10 ⁻⁶	11,5·10 ⁻⁶			

Таблица С-1. Расчетные значения количества проволок брони, прочности при растяжении проволок брони и брони в зависимости от диаметра кабеля.

OHZ,	броней,	Количество проволок**, шт		Прочность при растяжении проволоки, Н			Прочность при растяжении брони из проволок, кН***		
d проволоки брони, мм	мм Б кабеля под броми	алюминиевых и из алюминиевого сплава	стальных	алюминиевой	из алюминиево- го сплава	стальной	алюминиевых	алюминиевого сплава	стальных
1,60	До 25	31 - 50	31 - 50	320	600,0	680,0	10,0- 16,0	18,3- 30,0	21,0- 34,0
2,00	« 25 « 35	41 - 56	41 – 56	502,4	942,0	1067,6	20,6- 28,0	38,0- 58,0	43,8- 59,8
2,50	« 35 « 60	45 – 76	45 – 76	784,0	1470,0	1666,0	35,3- 59,6	65,0- 110,0	75,0- 126,6
3,15 (3,00)*	« 60 « 80	60 – 80	63 – 84	1248,0	2340,0	2400,0	80,0- 100,0	138,0- 184,0	151,0- 201,6
(4,00)*	« 80	-	63 и более	-	-	4284,0	-	-	270,0

^{*} Диаметры стальной оцинкованной проволоки

 $N = \pi \cdot (D+d) / d \cdot Ky$, где D – диаметр кабеля под броней; d – диаметр проволок брони; Ку – коэффициент укрутки проволок брони в зависимости от шага наложения проволок принимается равным в пределах 1,03 - 1,04.

$$P = 0.95 \Sigma Pi, i=1$$

где Рі – прочность при растяжении одной проволоки алюминиевой, из алюминиевого сплава или стальной оцинкованной, Н; n – количество проволок брони.

^{**} Количество проволок брони в зависимости от диаметра кабеля рассчитывается по формуле:

^{***} Прочность при растяжении брони рассчитывают по формуле

ЗАВОДЫ АО «ИРКУТСККАБЕЛЬ» и АО «КИРСКАБЕЛЬ»

Иркутск

AO «Иркутсккабель» 666030 Иркутская обл., г. Шелехов, ул. Индустриальная, д.1 Тел.: +7 (395-50) 5-29-01, 5-29-03 www. irkutskkabel.ru • e-mail: info@irkutskkabel.ru

Кирс

AO «Кирскабель» 612820 Кировская обл., г.Кирс, ул.Ленина, д.1 Тел. +7(83339) 29-200 www.kirscable.ru • e-mail: kkz@kirscable.ru

РЕГИОНАЛЬНЫЕ ПРЕДСТАВИТЕЛЬСТВА И СКЛАДЫ

Москва

000 "ТД "УНКОМТЕХ" 119017 г. Москва, ул. Большая Ордынка, д. 46 стр. 5 Тел.: +7(800) 600-10-20, +7(499) 277-17-50 www.uncomtech.ru • e-mail: sales@uncomtech.com

Evatorius

Тел.: +7 (495) 933-15-20

www.uncomtech.ru • e-mail: sales@uncomtech.com

Санкт-Петербург

Санкт-Петербурский филиал 000 «ТД «УНКОМТЕХ» 196247 г. Санкт-Петербург, Ленинский пр-т, д. 160, офис 426 Тел. +7 (812) 718-64-61. Факс +7 (812) 718-64-62 e-mail: dir.spb@uncomtech.com

Московский коммерческий департамент 000 «ТД «УНКОМТЕХ»

Нижний Новгород

Нижегородский филиал 000 «ТД «УНКОМТЕХ» 603086 г. Нижний Новгород, ул. Бульвар мира, д. 3, 3 этаж Тел. +7(831) 246-36-62 (многоканальный) e-mail: nntdu@uncomtech.com

Киров

Вятский филиал 000 «ТД «УНКОМТЕХ» 610017 г. Киров, Октябрьский проспект, д.104, офис 603/1/3 Тел.: +7(8332) 54-87-01, 54-87-02, 54-87-07, 54-87-50 e-mail: vftdu@uncomtech.com

Татарстан, Казань

Казанский филиал 000 «ТД «УНКОМТЕХ» 420034 Татарстан, г. Казань, ул. Декабристов, д. 85-Б. Тел.: +7 (843) 200-05-97, 200-05-98 e-mail: kztdu@uncomtech.com

Башкортостан, Уфа

Уфимский филиал 000 «ТД «УНКОМТЕХ» 450078 г. Уфа, ул. Кирова, д. 52 Тел. +7 (347) 292-93-92 e-mail: ufatdu@uncomtech.com

Самара

Самарский филиал 000 «ТД «УНКОМТЕХ» 443080 г. Самара, 4-й проезд, д.57, литера Б, Б1, офис 505 Тел.: +7(846) 207-16-16, 207-16-17 e-mail: smtdu@uncomtech.com

Ростов-на-Дону

Ростовский филиал 000 «ТД «УНКОМТЕХ» 344068 г. Ростов-на-Дону, пр-т М. Нагибина, д. 40 Тел. +7(863) 310-24-90 e-mail: rostov@uncomtech.com

Краснодар

Краснодарский филиал 000 «ТД «УНКОМТЕХ» 350018 г. Краснодар, ул. Сормовская, д. 3/7, офис 6 Тел.: +7(861) 275-80-76, 275-80-21 e-mail: krasnodar@uncomtech.com

Пятигорсь

Пятигорский филиал 000 "ТД "УНКОМТЕХ" 357500 г.Пятигорск, ул. Университетская, д.1, стр. 2, офис 8 Тел. +7(8793) 97-31-14 Тел. +7(8793) 97-31-67 e-mail: pgorsk@uncomtech.com

Екатеринбург

Екатеринбургский филиал ООО «ТД «УНКОМТЕХ» 620100 г. Екатеринбург, ул. Ткачей д. 23, 14 этаж, офисы 3, 11 Тел. +7(343) 380-10-80 e-mail: ekb@uncomtech.com

Челябинск

Челябинский филиал 000 «ТД «УНКОМТЕХ» 454100, г. Челябинск, Комсомольский проспект, д. 107А, оф 508-2 Тел./факс +7 (351) 268-93-47 e-mail: chtdu@uncomtech.com

Новосибирск

Новосибирский филиал 000 «ТД «УНКОМТЕХ» 630049 г. Новосибирск, ул. Красный проспект, д. 220/5, оф. 419, 417 Тел.: +7(383) 363-73-05 e-mail: novosibirsk@uncomtech.com

Красноярс

Красноярский филиал 000 «ТД «УНКОМТЕХ» 660064 г. Красноярск, ул. Академика Вавилова, д. 1 стр. 2, офис 403 Тел.: +7(391) 213-00-13, 213-11-13, 213-21-81 e-mail: krsk@uncomtech.com

Иркутск

Иркутский филиал 000 «ТД «УНКОМТЕХ» 666030 Иркутская обл., г. Шелехов, ул. Индустриальная, д.1 Тел. +7(395-50) 5-29-40. Факс +7 (395-50) 5-29-25 e-mail: arimskiy@irkutskkabel.ru

Хабаровск

Хабаровский филиал 000 «ТД «УНКОМТЕХ» 680020 г. Хабаровск, ул. Гамарника, д. 72, офис 403 Тел.: +7(4212) 41-25-96, 41-25-97 e-mail: habarovsk@uncomtech.com

Казахстан, Алматы

TOO «Торговый дом «УНКОМТЕХ»
050009 Казахстан, г.Алматы, ул.Толе би, д.189а, офис 5
Тел./факс: +7(727) 339-04-61
e-mail: almaty@uncomtech.com

Республика Беларусь, Минск

ИТУП «Торговый Дом «УНКОМТЕХ» 220020 Белоруссия, г. Минск, ул. Пионерская, д. 2-а, каб. 1 Тел./факс: +375 (17) 342-83-25, 342-83-26, 342-83-27 e-mail: minsk@uncomtech.com

